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Abstract

In this paper the dynamic response to concentrated moving masses of highly prestressed
orthotropic rectangular plate-structure is examined. When the ratio of the bending rigidity to the
in-plane loading is small, a small parameter multiplies the highest derivatives in the equation
governing the motion of the plate under the action of moving masses. Such vibrational problems
defile conventional methods of solution. An approach suitable for the solution of this type of
problem is the singular perturbation. To this end, a choice is made of the method of matched
asymptotic expansions (MMAE) among others. The application of the singular perturbation
scheme in conjunction with the finite Fourier sine transform produces two different but
complementary approximations to the solution for small parameter - one being valid in the region
where the other fails. One is valid away from the boundary called the outer solution while the
other is valid near and at the boundary called the inner solution. Thereof, the Van Dyke
asymptotic matching principle which produces the unknown integration constants in the outer
and inner expansions is applied. Thereafter, the inverse Laplace transformation of the obtained
results is carried out using the Cauchy residue theorem. This process produces the leading order
solution, and the first order correction, to the uniformly valid solution of the plate dynamical
problem. The addition of the two results above produces the sought uniformly valid solution in
the entire domain of definition of the plate problem. Similarly, the resonant states and the
corresponding critical speeds are obtained. The analysis of this result is then shown in plotted
curves. Graphical interpretation of the results show that the critical speeds at the respective
resonant states increase as the value of prestress increase thus the risk of resonance is remote as
prestress is increased for any choice of value of rotatory inertia correction factor. Also, lower
values of rotatory inertia show variation in the value of critical speed hence the possibility of
resonance. Similarly, the critical speed increases with shear modulus for various values of
prestress. However, as the value of shear modulus increases, critical speed approaches more or
less constant value. Thus, a design incorporating high value of shear modulus is more stable and
reliable. The critical speed increases with material orthotropy for lower values of rotatory inertia
correction factor.

Keywords: Bending rigidity, In-plane loading, Critical speed, Resonance, Shear modulus,
Orthotropy.
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INTRODUCTION

The problem of assessing the dynamic response of an elastic structure (beam or plate) which
supports moving concentrated forces have been treated by several authors in applied
mathematics, engineering and applied physics [1]. However, this problem is an approximation to
the original, more difficult problem in which the inertia effect of the moving load (a more
appropriate representation of what takes place in the real world) is taken into account. The more
realistic case in which the elastic structure is traversed by moving concentrated mass is taken into
consideration is fundamental in the analysis and design of roadways, airport runways, and
highway and railway bridges. Many aspects have to be taken into consideration in the design and
construction of these structures to improve their performance and extend their life. One aspect of
the design process is the dynamic response of structures. Owing to its wide range of application
in the engineering fields like transport engineering, aerospace engineering, civil and mechanical
engineering, the problem has been studied by many researchers [2].

It can be gathered from the above statements that dynamical problems involving moving loads
can be generally grouped into the following three classes:

@ In the first case, the mass of the moving load is considered much smaller than the mass
of the structure it is traversing,

(b) The second class comprises of the system for which the mass of the structure is assumed
to be much smaller than that of the moving load and thirdly we have

(©) The case in which both the mass of the structure and that of the moving load are of
comparable magnitude.

The first case is much simpler than the second and the third. In fact, the first is the commonest
problem treated in literature. In this problem, the inertial effects of the moving load are assumed
negligible and only the force effects of the moving load are taken into consideration. Thus, this
type of problem is termed the “moving force” problem. Though, the problem, on the assumption,
has been greatly simplified, the following question arises: how safe is a design based on this
assumption. The justification of this assumption would have been established had the solution of
this approximate model been proved to be an upper bound for the actual deflection of the
dynamical system. This approximation model in which the vehicle-track interaction is completely
neglected has been described as the crudest approximation known in the literature of assessing
the dynamic response of an elastic system which supports moving concentrated masses. The most
difficult of all the three types of the problem is the third, while both the second and third problems
involve not only the consideration of the force effects of the moving load but also its inertial
effects, the moving load in the formal does not have mass commensurable with the mass of the
structure. The third type of problem may be termed “moving mass” problem. This is an
improvement over existing works in literature that determine the displacement response of plate-
structures under the action of moving loads. In this work, the third case is presented. When the
inertia effect of the moving load is so considered, the governing partial differential equation of
motion becomes complex and laborious and no longer has constant coefficients. In particular, the
coefficients become variable and singular. More complicatedly is the situation whereby the plate-
structure is highly prestressed and orthotropic in which bending effects at the boundaries are
considered. In particular when a plate-structure is highly prestressed a small parameter multiplies
the highest derivative in the governing differential equation. This class of dynamical plate
problem in which a small parameter multiplies the highest derivatives in the governing
differential equation is not common in literature. However, this class of plate problems have been
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solved when the plate is executing free vibration or when a static load is acting on such plates,
Hutter and Olunloyo [3, 4]. Instances in which plate-structures are subjected to moving
concentrated forces are attempted by [5], with the discovery that it may not be safe to rely on the
approximate solution produced by the problem of dynamic response of plates to moving forces
(as opposed to moving masses). The problem of highly prestressed orthotropic plate-structures
subjected to moving masses is rear in literature.

In boundary-initial value problems in which a small parameter multiplies the highest derivative,
the conventional methods of solution fails and one seeks an approximation technique. The
approximate analytical solution technique to which this plate dynamical problem, involving a
small parameter multiplying the highest derivative, is amenable is the singular perturbation (since
the order of the equation is lowered when the small parameter (say ¢ = 0)).

Commonly seen in literature is the analysis of plate structures whose material is assumed to be
homogeneous and isotropic in all directions. But in many practical applications of plate
structures however, it is often necessary to consider directional-dependent bending stiffness,
that is, the structural properties of the plate differ in two mutually perpendicular directions.
Such structural elements in which resistance to mechanical actions is different for different
directions can be strengthened by corrugation, corrugated plates or strengthened by stiffening
ribs, to name a few. According to Rudolph [6], not only will civil engineers need to calculate
stresses and strains in orthotropic plates, but also physicists who deal with plates made of
crystals, for instance quartz crystals. In some other cases, the structural material itself is
inherently orthotropic. Two-way reinforced concrete slabs are prime examples of such natural
anisotropy. Orthotropic plate-structures are very common in present-day engineering. In
architectural engineering for example, reinforced-concrete slabs with one-way or two-way
joists are often used for floor systems in buildings. In civil engineering, the highway bridge
decks usually consist of plates stiffened with rectangular, triangular or trapezoidal ribs. The use
of stiffened plates is especially indispensable in ship and aerospace structures. That is, the hull
of a ship, its deck, its bottom and superstructure may be considered as orthotropic plates.
Similarly in flight structures, the wings and fuselage consists of skin with an array of stiffening
ribs. In most of the previous investigations in literature on vibration of rectangular plate
under moving loads, the cases when prestress is very high are rarely addressed. Also to the
best of the author’s knowledge, the case when the plates which are highly prestressed
and placed on bi-parametric subgrade are outstanding. Thus, this work is concerned
with the problem of assessing the effect of prestress, Pasternak foundation and cross-
sectional dimensions of the plate on the dynamic response to a moving load of a highly
prestress elastic rectangular plate.

Furthermore, in structural dynamics, the moving-load-induced vibration problems have
been the subject of numerous research efforts in the last century. Thisis due largely
to the fact that these problems have enormous applications in many branches of
transportation Engineering and other related fields. Thus, there has been an increasing
need for the continuous study of the behavior of (elastic/inelastic) bodies subjected to
moving loads. This need has motivated several researchers in the fields of physics,
engineering and applied mathematics to develop a considerable interestin the problem [7,
8 — 26]. The fundamental complexity of the interactions between structural members and
accelerating heavy masses traversing them at various velocities have been (and still
continue to be) a great concern to researchers in Engineering, Physics and Applied
Mathematics. This is because structure-load interactions have wide applications in
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mechanical, civil, aerospace and structural engineering. In particular, applications of such
structural members when under moving loads include but not limited to the response
of railroad rails to moving trains, the response of bridges and elevated roadways to moving
vehicles, concrete floor slabs, rudimentary surfaces for aircraft and guided missiles, machine
chain, paper sheets belts, fiber textiles, band saw blades, magnetic tapes, furnace conveyor
belts, computer tape drives, floppy disks and video cassette recorders (VCR) to mention a
few. Therefore, a basic understanding of the complexity of the dynamic interactions
between structural members and the masses traversing them is very vital as it helps in
controlling structural vibrations and save operations of such dynamical system. In most
analytical studies in the field of Engineering and other related fields, structures have
commonly been modelled as beams, plates or shells supported with or without one type
of bearing member or the other. Whensuch structural members are subjected to moving
loads, the interaction between the moving load and such engineering structures on which
they travel makes the dynamic response analysis very complex. Various structures
ranging from bridges and roads to space vehicles and submarines are constantly acted
upon by moving masses. Thus, there is the need to decide the strength of structure that
would be suitable to withstand the impact of certain moving loads.

The problem of the dynamic behaviour of elastic structural members (beam or plate) to
moving loads has been the objective of numerous investigations in mathematical physics,
applied mathematics and engineering for several years [1]. The problem of moving load
was first tackled for the case in which the structure is considered small against the mass
of a single, constant load. In particular, Willis et al [14] considered the problem of elas-
tic beam under the action of a moving load. He assumed the mass of the beam to be
smaller than the mass of the load and obtained an approximate solution to the problem.
Later, the dynamic response of a simply supported beam, traversed by a constant moving
force at a uniform speed was studied by Krylov [27]. His results were obtained by using
the method of expansion of Eigen-functions. He assumed that the mass of the load was
smaller than that of the beam. Lowan [28] solved the problem of transverse oscillations of
beams under the action of moving loads for the general case of any arbitrary prescribed
law of motion.

In the same trend was the work of Yoshida [29] who studied the vibration of a beam
subjected to moving concentrated load using finite element method. The load acting on
the beam in this problem was static. Later, Gbadeyan and Aiyesimi [30] considered the
effect of Kelvin foundation on the response of elastic simply supported beam and rect-
angular plates subjected to moving loads. Only the force effect of the moving load was
considered. In the study, resonance conditions which depend on both the visco-elasticity
of the foundation and the cyclic motion of the load were obtained, and a particular fre-
quency of the oscillation load which gives the maximum amplitude of oscillation for the
resonating system in both the beam-foundation and the plate-foundation was obtained.
In a much later development, Oni [31] considered the problem of a harmonic time-variable
concentrated force moving at a uniform velocity over a finite deep beam. The methods
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of integral transformations were used. Series solutions of problem which converges was obtained for
the deflection of simply supported beams and analyzed for various speeds of the load. Just as for
elastic beams, the problem of dynamic response to elastic plates to moving loads when the mass
effect of the moving load is neglected has been solved by many researchers. However, in comparison,
plate subjected to moving loads has only attracted the attention of few authors. Among the earliest
researcher into the subject was Holl [32] who solved the problem on rectangular plate carrying
uniformly moving loads. He concluded that a critical velocity existed for each mode of vibration.
Livesly [33] on the other hand, considered the problem of a uniformly travelling load on an infinite
plate and show that there exists a certain critical velocity, beyond which the stresses and deflections
become finite. However, in these studies, only the force effect of the moving load is taken into
consideration and the case where load mass is of comparable magnitude remained unaddressed for
several years. However, recently, the advent of modern highway bridges, together with increased
velocity and the mass of automobiles has forced a renewal of consideration of this problem. Pestel
[34] made bold attempt to solve the problem by using Rayleigh-Ritz technique to reduce the moving
mass problem defined by continuous differential equation to an approximate system of differential
equation with analytic coefficients. The system was reduced to a finite difference scheme for solution,
without numerical example. Much later Stanisic et al [35] studied the problem of a simply supported
non-Mindin plate under the multi-masses moving system. They made use of approximation of
Dirac-delta function and obtained in series form a closed form solution of the dynamical problem.
A one dimensional analogue of the work in [36] was taken up by Milomir et al [37] who developed a
theory describing the response of a Bernoulli-Euler beam under an arbitrary number of concentrated
moving masses. The theory is based on the Fourier technique and show that, for a simply
supported beam, the resonance frequency is lowered with no corresponding decrease in maximum
amplitude when the inertia is considered. The analytical and numerical solutions were shown to
converge very rapidly. This work was later extended by Stanisic et al [38] to include all the components
of the inertia terms. The response to the moving concentrated masses of elastic plates on a non-
Winkler elastic foundation was later taken up by Gbadeyan and Oni [39]. They found that, for the
same natural frequency, the critical speed for a rectangular plate rest- ing on a Pasternak foundation
and subjected to a moving mass is smaller than that of the same plate traversed by a moving force.
Their method of solution as with other references earlier stated is suitable only for simply supported
end conditions. This deficiency was later addressed by Sadiku and Leipholz [40] on the dynamic
analysis of an elastic beam traversed by a concentrated mass. They developed an analytical
technique capable of solving Bernoulli-Euler moving load problems for all variants of classical
boundary con- ditions. The technique involves transforming the governing differential equation by
using the Green’s function of the associated moving force problem. Although, the work is im- pressive,
its application is limited only to the case of beams executing flexural vibrations according to the
simple Bernoulli-Euler theory of flexure. Also to the best of the author’s knowledge, this technique
has not been extended to two dimensional moving load prob- lems. To this end, a more robust
technique was developed by Oni [41] and Gbadeyan and Oni [42]to solve the problem of a finite
uniform Rayleigh beam (a thick beam) un- der an arbitrary number of moving concentrated masses.
The theory advanced involves the development of an analytical technique which is based on the
modified generalized finite integral transform and modified Struble’s method. An important feature
of this technique is that it is applicable to all variants of classical end conditions, as well as both thin
and thick beam moving load problems. A two dimensional analogue of this tech- nique was
developed by Oni [41] to solve the problem of dynamic response of elastic plate under the action of
several moving concentrated masses. It was observed that, for the same natural frequency, the
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critical speed for the system consisting of a rectangular plate resting on the Pasternak’s subgrade and
traversed by a moving mass is smaller than that traversed by a moving force for both simply supported
and simple-clamped rectangular plates. The analyses further show that for both simply supported
and simple-clamped rectangular plates, the response amplitudes decreases with an increase in the
value of shear modulus for the fixed value of foundation stiffness. However, for simple-clamped
isotropic rectangular plate, greater values of the sub-grade’s shear modulus for a fixed value of
foundation stiffness are required for a noticeable effect on the response curve due to a moving force
or a moving mass. This two dimensional analogue of the new method is based on the fact that,
for rect- angular plates, a common selection of function is beam mode shapes, also called beam
functions. The boundary conditions of the beam and the plates are assumed to be of the same
type. The argument is that, for instance, the behaviour of an axial strip of a rectangular plate
should be similar to that of a beam of the same type of boundary conditions. Thus, the two-
dimensional analogue of our new method involves a modified generalized two-dimensional integral
transform whose kernel is the product of the beam functions in the x-direction and that in y-direction.
Since each beam function satisfies all the boundary conditions in the pertinent direction, the kernel
in the integral transform satisfies al boundary conditions for any plate problem of practical interest.
Thus, the generalized two-dimensional integral transform is used to reduce the fourth order differential
equation governing the vibration of the plate to the second order ordinary differential equation
which is similarly treated using the modified asymptotic method of Struble. Also, a two-
dimensional theory, on the correction for rotary inertia, on flexural motions of isotropic elastic plate
under moving load was studied by Oni [43]. The generalized two-dimensional integral transform
with the normal modes of the plates as the kernel of transformation is used for the solution of the
problem. The results show that the moving force solution is not always an upper bound for accurate
solution for the plate problem. In a more recent article, Huang and Thambiratnam [44] studied
isotropic homogeneous elastic triangular plate resting on an elastic Winkler foundation under a
single concen- trated load. Finite strip method is employed, numerical example shows that when
the load moves with zero or small initial velocity, the dynamic response of the structure is steady
and unlike the response due to the sudden application of a load. Worthy of note, also, is the work
of Shadnam et al [45] who investigated the dynamics of plates under the influence of relatively
large masses, moving along an arbitrary trajectory on the plate surface. As an example, the dynamic
response on a rectangular plate, simply supported on all its edges, under a mass moving parallel to
one of its sides and also travelling along a circular trajectory is presented by means of operational
calculus. Analysis show that the response of structures due to moving mass, which has often
been neglected in the past, must be properly taken into account because it often differs significantly
from the moving force model. Shadnam [46] in another paper, worked on periodicity on the response
of non-linear plate under moving mass.

Furthermore, in most of the previous investigations, only structures (beam or plate) not resting on
elastic foundation were considered. Meanwhile, for practical application, it is useful to consider
structures, such as plates and beams supported by an elastic foundation. For instance, an analysis
involving such a foundation can be used to determine the behaviour of plates and beams nowadays,
runways and bridges. The dynamics of structures (beam or plate) on elastic foundation is of great
theoretical and practical significance [47, 48]. Theoretical and experimental investigations have
been carried out extensively, particularly, when the foundation modulus is constant along the span
of the structure. The simplest mechanical foundation model was proposed by Winkler [49]. The model
expresses the relation between the pressure and the deflection of the foundation surface. The
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Winkler foundation model consist of an infinite number of closely spaced springs uniformly
distributed along the structure. When the spring constant also called foundation modulus, is constant
along the length of the structure, the differential equation of motion of the structure has constant
coefficients.

The analysis of beam and plate on Winkler foundation when the foundation modulus is constant is
very common in literature. The work of Timoshenko [50] gave impetus to research work in this
area of study. He used energy method to obtain solution in series form for simply supported finite
beam on elastic foundation subjected to time dependent point loads moving with uniform velocity
across the beam. Steele [51] also investigated the response of a finite, simply supported Bernoulli-
Euler beam to a unit force moving at uniform velocity. He analyzed the effect of this moving force
on beams with and without an elastic foundation. Using a considerable simpler vector formulation
with a Laplace rather than Fourier transformation, Steele [52] presented a review of the transient
response on the Bernoulli-Euler beam and Timoshenko beam on elastic foundation due to moving
loads. The problem of a cylindrical shell with an engulfing asymmetric pressure wave is shown to be
generally quite analogues to Timoshenko beam.

The foundation model based on Winkler’s approximation model is very common in literature, whereas,
in such important Engineering problem as the vibration of plates or beams resting on elastic
foundation, a more accurate two-parameter foundation (Pasternak foundation) model which
incorporates the shear effect to the foundation in addition to foundation stiffness, should be used
rather than Winkler’s approximation model. Winkler’s approximation model has been the object of
criticisms [53 — 55], because it predicts discontinuities in the deflection of the surface of the
foundation at the end of the finite beam, which is in contradiction to the observations made in
practice. A more realistic foundation model, known as Pasternak foundation model [56], which
considers the continuities in the surface displacement beyond the region of the load, should then
be considered. For this model, a second foundation constant, the “shear modulus” K enters the
analysis. Evidently, the incorporation of the shear modulus in the foundation model makes the
problem more cumbersome and difficult to solve.

In all the aforementioned studies, no consideration has been given to bending effects at the
boundaries. In particular, when a plate-structure is highly prestressed, a small parameter multiplies
the highest derivatives in the governing differential equation. Thus the methods of solution of all
the aforementioned authors break down. This is so because when dealing with a highly prestressed
rectangular plate of moderate thickness, bending effects must be duly taken into account. In
particular, the domain far from the boundaries can generally be regarded as obeying the reduced
order theory, whereas close to the boundary, bending effects become significant and may even
dominate the deformation pattern thus; a solution valid in the domain far from the boundary breaks
down near and at the boundaries.

Closed form solutions to this class of plate dynamical problems in which a small para-meter multiplies
the highest derivatives in the governing differential equation is not common in literature when the
plate is subjected to a moving load. However, this class of plate problems has been solved when the
plate is executing free vibration or when a static load is acting on such plate, Hutter and Olunloyo
[57].

Singular perturbation has to date seen relatively little use in solid mechanics but it is nonetheless

being successfully used, Cole [58]. In particular, Hutter and Olunloyo [59] has employed it in

investigating rectangular membranes with small bending stiffness while Hutter and Olunloyo
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treated, among other things, the vibration of a thick strip-like membrane under anisotropic prestress.
Similarly, Schneider [60] considered the vibrations of isotropically prestressed rectangular plates
with built-in edges. In his paper, he essentially constructs outer (core) and inner (boundary layer)
solutions which are valid in partly disjoint domains. These solutions are then matched in an
intermediate domain where both asymptotic expansions arevalid. Much later, Olunloyo and Hutter
[61] studied the response of thin, isotropic, prestressed rectangular plate for the case when the ratio
of bending rigidity to the applied in plane loading is small. He used the method of compos- ite
Expansion (MCE) to construct solutions for various boundary conditions. Oyediran and Gbadeyan
[62] considered the case when the clamped highly prestressed rectangular plate exhibits natural
material orthotropy. The problem was solved using the method of matched Asymptotic Expansions
(MMAE). In a more recent article, Gbadeyan and Oyediran [63] compared the two singular
perturbation techniques (MCE and MMAE) for initially stressed thin rectangular plate. They found
that the results of the MMAE agree with those obtained using generalized MCE and specialized
version of MCE when the effect of shearing deformation is O(e). Another work worthy of mention
is the work of Olunloyo and Hutter [59] who investigated the dynamic response of prestressed
rectangular membrane to certain external time dependent forces when the effect of bending rigidity
is small using the MCE. It is remarked at this juncture that, until recently to the best of the authors
knowledge while the effect of small bending rigidity has been investigated for free and some forced
vibration of plate problems, aside the work of Oni [64], calculations for this class of problems for
moving load plate problems do not exist in literature.

After an earlier work by Oni [64] where he studied the dynamic response to a moving load (using the
method of matched Asymptotic Expansion MMAE) of a fully clamped pre- stressed orthotropic
rectangular plate, Oni and Tolorunsagba [65] took up the problem of assessing the rotatory inertia
influence on the highly prestressed orthotropic rectangular plate when it is under the action of
moving load. The method of composite expansion (MCE), an alternate singular perturbation
technique is employed in conjunction with the method of integral transformation and Cauchy
residue theorem to obtain an approx- imately uniformly valid solution in the entire domain of
definition of the rectangular plate. Analysis showed that the critical velocities of the dynamical
system increase with an increase in prestress and rotatory inertia values. Thus, resonance is
reached earlier for lower values of prestress and rotatory inertia. Also, for high values of rotatory
inertia correction factor, the critical velocity approaches a constant value indicating that resonant
effect is remote for higher values of rotatory inertia correction factor.

However, in the work of Oni [64]and Oni and Tolorunsagba [65], only plates not resting on foundation
and under moving forces were considered. For practical application, it is pertinent to considered
plates supported by an elastic foundation. Also, in the moving load model, only the force effect
of the moving load is considered in [64] and [65] and the inertia effect of the moving load was
neglected. However, it has been found that the inertia of the moving load contribute effectively
to the deflection of the dynamical structure.

In this study, consideration is given to orthotropic plate-structures, in which the principal directions of
elasticity coincide with the coordinate lines x, y, traversed by moving mass, thus incorporating the rotatory
inertia correction factor.

MATHEMATICAL FORMULATION

In this research work, the problem of the dynamic response to moving concentrated mass of a highly
prestressed orthotropic rectangular plate is examined. Neglecting the effects of shearing prestress and shear
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deformation, the transverse displacement V(x, y, t) of a highly prestressed orthotropic rectangular plate
occupying the domain Q[0 < ¥ < 1,0 < ¥ < b] and traversed by a moving concentrated mass, when the
rotatory inertia correction factor is incorporated, is governed by the fourth-order partial differential equation
of the form

*v(x,y,0) *v(x,y,0) v (x,y,b) %v(x,y,t) 32V (x,y,b)
Dex = ¥ 2Dsy 550 Y Dy~ — Nex 5 —Nyv 5 —
92 - 82V (%9,b) _
HRot 5 (VPV(%,7,D)) + p—3=%= = P(%,7,1) 1)
where,

Dsx and Dy are respectively the flexural rigidities in x- and y- directions, Dgy is the effective torsional
rigidity, Ngz and Ny are respectively the axial prestress in x- and y- directions, x,y are the spatial
coordinates, t is the time coordinate, R, is the rotatory inertia correction factor, u is the mass of the plate
per unit area, V(x, y, t) is the displacement response of the plate, P(x, y, t) is the applied external moving
load, V2V (x, y, t) is the Laplacian operator on V (x, y, t).

Since the plate is assumed to be fully clamped, the boundary conditions are

x=0, 0y<D),, . _ ~ _ WEyE _
y=0, 0<x< 1} S wvEyE
y=b o0=<x<1j/®&¥»D=0, a7 O 3

For simplicity, the plate is assumed to be at rest prior to the arrival of the load, and so the initial conditions
are

V(EF0 =0, T2 =0 4

The concentrated load traversing the rectangular plate has mass commensurable with the mass of the plate.
Thus, the external load takes on the complicated form

_ _ 1d?v(x,3,b)

P(x,y,t) = Pf(X,y,t_)(l— ET) (5)
in whichP¢(x, y, t), the continuous moving force acting on the rectangular plate, is denoted as
where 6 (X — a) is the unit concentrated force acting at a point X = a called the Dirac delta function, M is

e

the mass of the rectangular plate, g is the acceleration due to gravity and %;y’t) IS a convective
acceleration operator on V (i, y, t) defined in Fryba[1] as

@@ _ 9 50 20

e T o T o (7)

Here physical meanings can be given for the terms involved in the right hand side of

equation (7). The first term measures the effect of acceleration in the direction of deflection, the second
term measures the effect of complementary acceleration (i.e. Coriolis force) and the third term measures
the effect of the part of curvature (i.e. centrifugal acceleration) of the plate induced by the mass of speed ¢
at the position of action.
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This moving mass model has been adopted by Stanisic and Hardin [66], Ting et al [16], Sadiku and Leipholz
[40], Akin and Mofid [8].
NON-DIMENSIONALIZATION

For the purpose of approximate solution, it is pertinent to present equations (1) — (3) in dimensionless form.
This act brings out the important dimensionless parameters that govern the behaviour of the dynamical
system. With the introduction of the dimensionless quantities L, Ny, D,.,, and t equation (1) becomes

[6 w(x, y t) n 5 04 I*W(xy.t) t) 2 84W(x,y,t)] 2 W (x,yt) 2 2w(x,yt) . 3*W(x,y,t) _
2pi T ax2ay? + B2 dx2 2 gy Atz
64W(xyt) 4w (xy,t) _ 02 W(xyt) Y,
Ot[ aczoxz T at29y2 ] + £o8(x —ut)6(y = yo) [ +2u aax TY T o
Mogd(x — ut)6(y — yo) )

where it is assumed that 0 < € « 1, as will happen if the flexural rigidity is weak compared to the high
prestress, and is defined as

g2 = 2% (8.1)

NoL?

2w (x,y,t) 2 62W(x,y,t)] _

where as usual Dgz denote the plate’s bending rigidity in the x-direction, N, a reference prestress and L is
a characteristic length with respect to which the deflection and the two coordinates are normalized viz:
V=WL, x=xL, y=yL. On the other hand time is assumed to be normalized with respect to a
characteristic frequency w such that

uL?
Now

t = wtand =1. (8.2)

The coefficients 52 and 2 measure material orthotropy such that

31 = % 32 = D_ (83)

xx

While y2 and yZ measure the prestress ratio and are defined as

N N
¥ = iox'yzz = NLOY (8.4)
respectively.
Also
Ro
Qot = L_zt (8.5)
is the coefficient of rotatory inertia.
w M
Lo=537 (8.6)
is a measure of the mass ratio and
cL s
u—;,yo—z (87)
subject to the boundary conditions (in non-dimensional form).
x=0, 0<y<hb L OW(xyt)
x=1 Osysb} W(x' Y t) =0= D (9.1)
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=0, 0s<x<1 A OW(xy,t)
J3/1=b 05;651} Wy t)=0= ay (9.2)

together with the initial conditions

oW (x,y,0)
at

OPERATIONAL SIMPLIFICATION

It is observed that a small parameter multiplies the highest derivatives in equation (8). For such problems a
regular perturbation lowers the order of the differential equation —except in this regions of rapid change
(often called boundary layer) where the high value of the derivative cancels the effects of the multiplying
small parameter- which in turn means the solution cannot satisfy all the boundary conditions. A special
treatment is therefore needed in the region near as well as at the boundary where its boundary condition is
yet to be satisfied. And as such, the problem is only amenable to singular perturbations, in particular the
method of matched asymptotic expansions (MMAE). However, equation (8) is considerably simplified by
introducing the Laplace transformation defined by

W(x,y,0) =0 = (20)

W(x,Y,s) =IW(X, y,t)e *dt, $>0,t>0 (11)
0

With the properties

LW (x,y,0)} = W(x,y,s) (12.1)

L{5(t — ty)} = e Sto (12.2)

where £ is the Laplace transform operation symbol. Taking t as the principal variable will make equation
(8) to become

A R e LA
o SzF“Wé;y'% _|_aAW(X’Zy't)}+FO5(y—yO){|a+2U|b+U2|C}=M095(y_)’0)|d )
Where
o= [} 8(x — ut) D st gy N
o= [ 8(x — ut) 222D st gy (142
o= 77 80 — ut) T2 o st gy (149)
o = [} 80 — ut) 222D sty 149

The integrals (14) cannot be easily evaluated and so use is made of trigonometric series representation of
the Dirac delta function obtained from the Fourier series expansion of the function as

S(x —ut) =1+ 272 [cos 2mrut cos 2mrut + sin 2mrut sin 2mrut] (15)
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In view of equation (15) the complete Laplace transformation of equation (8) is
2| O W(x, Y, 2 0'W(X, Y, 2 0"W(X, Y, 2 0°W(X, Y, 2 0°W(X, Y, 2 2| O*'W(X, Y,
& { Wg(Ay .24 \g((zxa;/z R WgAy S)}—n Wg(zy )y Wg;zy D, SW(xY.8)-auS {Wg(zysh
azw(x;y‘t)} FT8(y = Yo)[SW (X, ¥,5) + 2USW, (X, y,5) + UMW, (x, ¥, 5)] = %ge’%
(16)
subject to the boundary conditions
x=0, 0<y<b
V=0l (x,y,5) = 0 = WX Y.S) (17.)
x=1 0<y<b OX
=0, 0<x<1
y W(x,y,s) = 0= X Y.8) (17.2)
y=b 0<x<1 oy
Together with the initial conditions

SOLUTION PROCEDURE

In equation (16), an exact uniformly valid solution in the entire domain is not possible and it is observed
that a small parameter multiplies the highest derivative in the governing differential equation. Thus, the
singular perturbation method is used, in particular the method of matched asymptotic expansions, to solve
the dynamical problem. This technique provides an approximate solution to the given problem in terms of
two separate expansions which are valid in a closed interval Q[0 < x < 1,0 < y < b]. The two expansions
called inner and outer expansion, neither of which is uniformly valid but whose domain of validity together
cover the interval Q. The method of matched asymptotic expansions (MMAE) developed by Bretheton [11]
required that the asymptotic solution of equation (16) be of the form

WX, y,t) =W, (X, y,1) + aw, (X, y,t) (19)

Substitution of equation (19) into equation (16) gives, after rearranging and equating coefficients of the
powers of &, the recurrence relations

M —sx,
“eS5(y-y, e 7 V=0
(20)
H,(x,y,8)=10 v=1
DV*W, ,(x,y,s) V=2

Where
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o°W, (X, Y,s O°W, (X, Y,s O°W, (X, y,8) 0°W,(X,Y,s
H(x,y,5) = —2 v(zy )_722 (2y ) (2y ), (2y )
OX oy OX oy

W, (x,y.8) 2 0W,(x,Y, s)]

+8°W, (X, y,s)—aots{

1 2
+—T oly - S“W (X,V,8)+2us
= Toaly yo)( (%, Y,9) > v

(21)
And
4Wv—2 (X’ yl S) + ﬂZ 84WV—Z (X’ y! S)
6X28y2 1 6X26y2
Here the subscript of W (x, y, s) denote the order of ¢ and v* =v? . v2(V?is the Laplacian operator) while
D is as earlier defined. Subject to the transformed conditions at the boundaries

0'W,, (%, Y,s)
4

0
+2432
x B

DV‘W,,(x,y,s)= (22)

W, (0,y,5) =W, (0,y,5)=W,(0,y,5)=+--=0 (23.1)

oW, (0,y,s) _ oW,(0,y,8) _ oW, (0,y.8) _  _
ox a ox a Ox S (23.2)

Wo (L Y S) :W1(11 Y, S) :WZ (11 Y, S) =--=0

(23.3)

aWO(l, y,S) _ an(l, yls) _ aWZ(l’ y,S) =...=0
S = S = e (23.4)

W, (x,0,8) =W, (x,0,8) =W, (x,0,8) =---=0 (23.5)

W, (x0,5) _ W, (x0,5) _ W, (x0:s) _
oy oy oy (23.6)

W, (x,b,8) =W, (x,b,s) =W, (x,b,s) =---=0

(23.7)
oWy (x,b,s) _ 0Wq(x,b,s) _ 0W,(x,b,s) _

dy - ady - ay -

To determine expansions valid at the boundaries, use is made of the perturbation scheme:

WX, y,s) = Wi(X,y,s) + eWi(X,y,s) + e2Wi(X,y,s) + 0(e)
(24)

=0 (23.8)

where superscript i refer to inner solution. Equation (24) is also valid near x = 1, where the inner variable

issetas X = I_Tx Expressions similar to (24) can be written down for the solution near y = 0 and y = b,

. . . b-
where the inner variables are set respectively asY = %and Y = Ty as
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W (x,Y,s) = Wix,Y,s) + eWi(x,Y,s) + e2Wi(x,Y,s) + 0(¢) (25)
Substitution of equation (24) into equation (16) near either x = 0 or x = 1 produces
WX, y,s) 0 Wyixy.0)
TR+ aus® — M 60y )]
ani_l(X, y, S) a4in—2(X,y,s) aZW‘Vi—Z(XJ y: S)
= 2usly 6(y — ¥,) X —Zﬁfaxz—ayz‘l' [¥5 + aoes?] 3y2
= s [1+ 15 8(y = y) Wy, (x,y,5) — B3 —” v=10134
(26)
a4\/\/1/' (X,y,S) 2 82Vvvl (X,y,S) a SZ aZWVI (lels)_l_uZF 5(y y )aZWVI (X,y,S)
ox* T o o2 ° ° ox?
o*W,, (X, y,s) OW, (X y8) 2 WL (X, Y.S) | o
= 2USF05(y - yo) (’13X2 B 21312 8X226'y2 + 7/22 . 2 + SszfZ(X Y S)
2 i
+as? Wvgsf’y's)—szfoﬁ(y— YOW (X, y,5)+ 09 = 2, (27)
u
Subject to boundary conditions
M/vi(X’y’ S) =0= %' v=0,123,..
(28)
Similarly, near y = 0 or y = b, one obtains the differential equations
oW} Wi (x,Y,s) 0*W,_,(x,Y,s)
v(x,Y,s) v-2
B3 vt (vs + aot).T 287 322972 +[yi + apes®
0*Wy_siry OWy_axy
— 12Ty 8(y — yo)] —2220 (x,y,5) — 2usTy 8(y — yp) — )
0x 0x
— s 14 I (v — y)IW,_2(x, Y, s) v=0,1,3,.. (29)
a W‘le ,S. aZWl; X,Y,S aZW; X,X,S 1J X,X,S a Wv ( Y ) ]
2,32 6541/ ) oc% a;ZY ) _ aotsz a;ZY ) — 231 Zg(yzy )+ o 2 azzx S ZVVOL(X’ Y,s)+
*Wi(xy, ; OWE_, (Y,
es? Y — 235y — 3 )W, YV, 5) = 2usTy 8(y — o) 228D ey oy -
2Wi_,(x,Y,s) Mog _sx/u _
o) dx2 T u € ! v - 2
(30)
Subject to the boundary conditions
VVUi(xr Yr S) =0= %, v = 0,1,2,3,
(31)
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Next, the solutions of equations (20) for the function W, (x, y, s) and equations (26), (27), (29) and (30) for
the functions W, (X,y,s) and W,(x,Y,s) subject to the respective boundary conditions (28) and (31) are
sought using finite Fourier sine integral transformation method.

6.3.1 LEADING ORDER SOLUTION
Here the solutions of W (x, v, s) and W{ (x, y, s) are sought.
6.3.1-1SOLUTION FOR W{(x,y, s)

Substitute v = 0 in the recurrence equation (20), the governing differential equation for Wy’ (x, y, s) is given
as

2w (x,y,8) 2wl (x,y.s) 2wl (xy,s) . 92wWl(x,y.s)
2 o (XY, 2 o (XY, 2 2 o (XY, o (X,
Vi Vi oy + s“Wy(x,y,8) — ag:s [ oz T 272 ] + To(y —

0 21170
Yo) [SZWOO (x,y,5) + 2us aW"a(:y ) 428 ng'y ) =9 5(y — yo)e
(32)

Now, one attempts equation (32) for the solution of Wy (x, y, s) by introducing the finite Fourier
sine transform defined as

Wo(m,y,s) = fol Wo(x,y, s)sinmmx (33)
With the inverse
Wo(x,y,5) = 2 X m=1 Wo(m, y, s)sinmmx

(34)
and

Wo(x,n,s) = fob Wy (x,y, s)sinnbﬂdy (35)
With the inverse

Wo(x,y,s) = %Z;‘;’lzl W, (x,n, s)sinnbﬂ
(36)
Thus, the Fourier sine transformation of (32) with respect to X is

92Wy(m,y,s)

— o WP (m,y,s) = To8(y — yo) (37.1)
where

2 Ho1+Ho3+Hos+T08(Y—yo)[Hoz—Hoe—Ho7]
Hoz+Hoa

(37.2)

where
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Hoy = —v{ (T_:) ) )
Hop = V3 (it)
H03 = 52 (lll)
Hoy = aotHoz (iv)
37.3
Hys = H04(m7'[)2 (v) ( ( )
Hye = 2mmus (vi)
Hy; = mmu? (vii)
J

while the Fourier sine transformation with respect to y is

21470 o —
2 ngjzc'n‘S)_i_yZ awoa(;c'n,S)+y3 WOO (x; n, S) = y4e Sx/u
(38)
where
— 2 2 u?
D1 = =V1-—Xoe 7 - (38.1)
22
n, = b/y1 (38.2)
S
N3 =y5 ()2 +s? g, s (507 + 5y, (38.3)
mgsinm
D, =" > [y, (38.4)  The
combination of the complimentary and particular solutions of (37) gives its general solution as
Wy (m,y,s) = Gy cosny — G, sinny +%sin(y — Yo) (39)
Similarly,the general solution of (38) is
o _ 0. % Oox [e~C/u=61)_1]e01% [e~0C/ut62) _1]g01%
Wo (x,m, $)=Brem ™+ Boe ™ = ma{ G g o (02— C/u+67) (40)
Where
1
01=3[-n2 + /03 + 4n;] (40.1)
1
9225['132 — /13 + 41;] (40.2)

The inversion of (39) and (40) gives the general solution of the equation (32) as

. T, .
W2 (x,y,s) = 2|G,cosny—G,sin 77y+—°sm(y—y0)] sin mix +%[31691x + Byef2% —
n

. [e—(s/u—91)_1]391x [e—O(S/u+92)_1]eB1x] . nmy
4 (01-0,/y+61) (62-6:)(5/y+62) b
(41)
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Where G, G, B, and B, are arbitrary constants yet to be determined by matching.
6.3.1-2 SOLUTION FOR Wi (x,y,s)

If v =0 is substituted into equations (26) and (28), neglecting terms with negative subscript, the leading
order inner problem near x = 0 or x = 1 is obtained as

I Woxys) _ 2 PWEXYS) _ 0
ax* 1 ax*

(42)
where
@7 = [y + aoes? —uPTo8(y — yo)] (42.1)
Subject to the boundary conditions
i = Wy
Wo (x’ y’S)|x=0,1 =0= o0x =01
(43)
Solving equation (42) subject to equation (43) produces
(e7* + o, X — 1)D(y), near x =0

Wi(x,Y,s) = e
o ) { (e7?* + 9, X —1)D(y), nearx=1

(44)
where

P1= \/(722 + aoes? — u?T6(y — ¥o)) (44.1)

Similarly when v = 0 is substituted into equations (29) and (31), neglecting terms with negative
subscripts, the leading order inner problem near y = 0 or y = b is obtained as

4yp7l i
7 Wy y.s) 2 2WE(x,Y,s) _

ay#4 2 ayz 0 (45)
where
2
0% = (VZ;—(”) (45.1)
2
subject to the boundary conditions
i A awg(x,Y,s)
Wi(x,Y, s)|y:0’b =0=—" o (46)

Solving equation (45) subject to equation (46) produces

(e7? X+, X—1F(y), neary=20

Wi(x,y,s) = 2
0(x,y,5) {(e—QOZX + @, X — DF(y), neary =b

(47)
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where
2_ 2
02 = |(B5) (47.1)

In equations (44) and (47), exponentially growing terms have been neglected while the functions D (x),
D(x), F(y) and F () are to be determined by matching. To this end, Van Dyke’s matching principle which
requires m-term inner expansion of (the n-term outer expansion) equals the n-term outer expansion of (the
m-term inner expansion) is adopted. Thus matching one-term outer expansion written in inner variable (44)
with one term inner expansion written in outer variable (47) (1-1 matching) immediately produces

D@)=Dx)=F@y)=F@®») =0

2(962—661)

(48)
G, =— %sin Yo (49.1)
G, = %cosecnb[sin(b — Yo) — Siny, cotnb] (49.2)
L N[

(91—92)(%4‘91) (62— 91)( +92)

5, -l () o

eb2_e01 (C 92)( +91) (62— 91)( +92)

In view of equations (48) and (49) equation (41) becomes

T,
Wy(x,y,s) = — ?Osin mmx{sin y, cosny + cosecnb sinny[sin(b — y,) — siny, cosnb|}

2 nmy [9_ (i + 91) - 1] [ ( + 6’2 - 1] (2e%9%2 — b)ef1* + (b — 2¢%1)
+ETI4 sin b @, _uez) (5+ 01) + @, 01) + 02 I 2(eP2 — o1 et2x

(el e ) -
Further simplification of equation (50) yields
[1 — (—1)me_%] (s? — 23)(s* — 2%) siny, cos 75
(52 = 0D [(s — 24)? — 0F]

[1 — 1(—1)me_%] (82 —23)(5% — 23) cscnb sinn€ y sin(b — y,)

(s2 = 0D)[(s — ") — 0]
[1 —1(=1)™e” u] (52 - .(2%)(52 N2 cscn®b sinn€ y siny, cosn b

(s2 = 09)[(s — ") — 0]

W(x,y,s) = M,g(1 — mm) sin nux

+
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+
bsaor(s*~08)+u?sTo—u [(s—027)%-03
Y, . MY [ 9 2203

2M,g sin—== B sin-—— 5
(s2.08)

ubaye(s2-03)
)
|2robaots(s —s)G—s)( —s3)

bsaot(s?—03)+u?sro—u , (s—07)2-03

ubrys(s? — 04)[e ubaor(s?-03) —1]

2ros(s = 51)(s = 52)(s — 53)

{st,(s? — 03 -1

S ——

—usro(1+x)—(1—x) [(s—027)2—03 (s—027)2-03x (s—027)2-03x
. J | J

[2e baye(s2-03) + be_ e Dbaot(s?-03) _ o bao(s?-03) -

ust, [(s—07)2-03 [(s—0,)2 gs]l

baot(sz_né)] [e bao(s?-03) _ e bao(s2-05)
sbage(s?2—02)-u?sro(1—x)— (1+x)u ,(s -07)2-03 —USTg—X ,(5—07)—!2%
b2a?,(s? — ag)[e ubaoe(s2-03) +e Dbao(s?-023)

2Tobaos(s — 1) (s — $2)(s = $3)

UST X
baye(s2—02) [

2e_

+ b2a?,(s?

sbage(s2—02)—u?sro(1-x)— (1+x)u ,(s—!)7)2—!2§ —USTg—X ,(5—07)—!25

{e ubaye(s2—03) +e Dbao(s?-03)

- 5) 2tobags(s — 51)(s — 53)(s — s3)
(51)

The Laplace inversion of (51) is defined as

Wy (x,y,t) = P [Fi(x, y,t) + F(x,y,t) + F3(x,y,0)] + Py, [Fa(x,y,t) + Fs(x,y,t) + Fs(x,y,t) +
Fy(x,y,t) + Fg(x,y,t) + Fo(x,y, )] + Py, { Fio(x,y,t) + F11(x,y, 1)}

(52)

where
. = M,g(1 — mm) sinmmx .
P, = M,g(1 ) si (52.1)
Py, = 2M,g sin%sinn%y (52.2)
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Pa3 = b? OC(Z)t (52.3)

1 a+ioo eSt[l—(—l)me_5](52—!2%)(52 -02)siny, cosny
e D = o o DG k] ds
(53.1)

1 a+zooe“[l—(—ﬂme‘%](sz—ﬂ%)(sz—ﬂ%)cschbsinnCysin(b—yo)

F(0y,0 = 5 fo oo (F-0D)[G-207-0] ds
(53.2)

1 catioo®t 1—(—1)me_% (s2-02%)(s?-02%) cscn®b sinn€y sin y, cosn°b
By, = oo | | (EERE)) [ RN @

3 4 11
(53.3)
/ bsage(s?—03)+u?sTy(2+x)-u(2-x) f(s—ﬂ7)2—!2§ \
e ubage(s2—03) L s(s?— Qé)

a+ico
— st
Ay D=0 fa_im ) \zrobams(s—slxs—sz)(s—sa(s—a3>(s—a4) / T

usTox+ ,(5—97)2—Q§x

1 ja+ioo , s(s? — 'QS) be bage(s2-Q3)
- est % * ds
2mi a—io (52 - ‘Qé) [ usTy— f(s—ﬂ7)2—!2§ usTo+ /(5—97)2—!2%—'
21e bage(s2-032) —e bage(s2-03) }
(53.4)
/ bsagt(s?—05)+u?sTo(14x)—u(1-X) ,(5—97)2—95 \
>y ) ja+ioo o e ubog(s2-03) (s? - Q%) d
XY, = — e * S
° 270 ) oo 2Tbag (s — s1)(s — s3)(s — 53)(s — a3)(s — ay) (s2— Qé)
usTox+ ,(5—97)2—Q§x
1 atio s(s2 — Q2 be bag(s2-03)
——,j est 3 : 29) ds (53.5)
2mi a—io (s? - ‘06) usTo— ,(5—97)2—933 usTo+ ,(5—07)2—Q§
2le baopr(s2-05)  _ ¢ bag(s2-032)
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Fe(x,y,t)
bsog(s?—03)+u?sro—u ,(5—07)2—!25 \ USToX—X ,(5—97)—!25
) e— ubxXr(s—2) bhe— bocor(s2-02)
1 a+too _ 1 I .
- ﬁfa_{w 2rob or (5 = 51)(s = 52)(s = 53) / usTo= [(5-0)2-03  usTo+ [(s-0,)2-03
21e bage(s2-0Q3) —e bage(s2—02)
(53.6)
(
bsegt(s?—03)+u?srg(2+x)—(2-x%) ,(5—97)2—!1%
1 atie e ubocoe(s2-032)
F(XJJ’;t)=_,f eSt<
7 2T oo 2rob o s(s — 51)(s — 52)(s — 53) (s —X3) (s —Xy)
\
\
ustg(1+x)—(1—x) ,(5—97)2—95
e bocgi(s2-03)
— > ds (53.7)
[ usTo— ,(5—97)2—(2% uslo+ (5—97)2—Q§]
2 I e bao(s2-Q5)  _ o bage(s2-0Q3) |
| |
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Fg(x,y,t)

bseg(s2—03)+u?sro(x—1)+(x—1) , (s—Q7)2-03

ubOCOt(SZ —Qg)

a+ioco e
— St <
277'1-];-[00 2rob o S(s — 51)(s — 53) (5 — 53) (s —X3) (s —4)

\
\
USToX—X ’(5—37)2—93
bocoe(s2-Q3)
> ds
usly— ,(s -0,)2-02 uslo+ ,(s -0)2- ng]
2 | e bage(s2-0Q3) —e bage(s2-0Q3) |
| )

y
bsetoe(s2 -3 ) usro(x-1)-Ger1) (s-2,)2-03
a+tco . e ubocot(sz—ﬂg)
Fo(x,y,t) = 5= e’
5(x,y,t) 2wt .[a_[oo < 2rob oo s(s —51)(s — 55)(s — 53) (s —¢3) (5 —Xy)
\
\

USToX—X ,(5—97)2—95

e bocot(s2-0Q3)

[ usly— ,(5—97)2—93 usTo+ ,(s Q7)2-03

—e

rds

2 ie bO_’Ot(SZ—Q%) baOt(SZ—Q

|

And finally,
2_02)_,2 N , _ _02
_[sbocot(s Q3)-u?sb(1-x) (12+x)u (s—Q,)2 981(52_93)
uboge(s2-Q3) J
a+ioco e l
F. =— est ds
1P T omi L_m 2Tob op 5(s = 51)(s — 5,)(s — 53)
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|[usl"0 +x / (s-Q,)2-02

] bocge(s2-03)
a+ico (SZ _ Qg)e |

Fi1(x,y,t) =— st d
1(xy,0) Zni_f ¢ 2Ib %o s(s — s1)(s — s5)(s — s3) S
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In order to evaluate the integrals in (53), the Cauchy residue theorem is employed. The singularities in the
integrals are poles. In particular the denominators of the integrands of F; (x, y, t), F,(x, y,t) and F5(x,y,t)
have simple polesat s = +Q3; and s = Q, + Q,;. In order to obtain poles emanating from the denominator
of the integrands of F,(x,y,t) — Fo(x,y,t) i.e.
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One sets the expression to zero and simplify thus
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Also, in the process of evaluation of integrals, there emerge cubic denominator, of the form ax3 + bx? +
cx + d, resolved into three factors using the cubic formula in [67 - 70] given as

<= -b+3/(b3-27a2d)

- 3a

(54)
Andso, F,(x,y,t)to Fy(x,y,t) have simple poles at

s=1045=0,5=5;,5 =5,,5 = 53,5 =X3,5 = , Where
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Fio(x,y,t) and F;;(x,y,t) have simple polesat s = 0,s = 51,5 =s,,and s = s5 .

It is straightforward to show that
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The combination of the results (55.1 —55.11) substituted into (52) yields the desired leading order solution
of (24) which represents the uniformly valid solution of the entire domain of definition of the given plate
problem.

First order correction
The next corrections in outer solution are obtained by setting v = 1 in equation (20). The governing
equation for WP (x,y, t) is given as

a%w. %w. %N atw
_)/12 ale (x, Y, S) - ]/22 ayzl (xP Y, S) + 52W1(x,y, S) - aOtSZ [Wzl (x: Y, S) + ay? (xr Y, S)] + FO6(y -

22w, .
0x? (x'y's)] =0

Yo) [szwl(x, y,s) + ZuS% (x,y,s) + u?
(56)
Now attempt is made on equation (56) for the solution of W2 (x, y,t). The procedure of getting this solution

is analogous to that of W (x, y, t). Similarly for Wi (x,y, t). Following the processes outlined for W, (x,y,t)
holistically one obtains the solution of W; (x,y,t) as
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From equation (19), the perturbation scheme of a uniformly valid solution in the entire domain of definition
of the plate problem is given as

W(x,y,t) =W, (X, y, 1) +ew, (X, y,t) (59)

Vao(Qf;, — 03) sin X+

Where W, (X, ¥,t) and w; (x, y,t) are respectively the leading order solution and the first order correction.

These are given as (52) and (57) in that order. In view of equations (52) and (57) equation (59) becomes
the required uniformly valid approximate analytical solution of the plate dynamical problem.

Remarks on theory
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Equations (52) and (57) are the leading order and the first order (transformed) solutions of the problem. The
leading order and the first order solutions are combined in equation (59) to form the composite solution
which is uniformly valid in the entire domain of the highly prestressed Orthotropic rectangular plate.

It is observed from the leading order and first order solutions that fully clamped highly prestressed
orthotropic plate traversed by moving concentrated masses reached the resonant state whenever
=13 (60)

Other conditions when the system reaches a state of resonance are

=03, 26=10,, 0e=20{ 6;=06and 2 =,
(61)
From (60 ) and (61), it is observed that the resonance conditions of the plate are dependent on anisotropic
prestress, mass ratio and rotatory inertia correction factor.

At this juncture, the critical velocities for the system of a highly prestressed orthotropic rectangular plate
under the action of travelling masses are sought. Few of the critical velocities that exist in the dynamical
system are given as

u(mn)—i(1+ 1—14 ocy,) (62)
NS ™ ommage N ot

u,(m,m) = %(b o m?m? £ /b2 &2, mimt + 4b)/12) (63)

_ by}
Us (m' 71') T\ 1-baym2n? (64)
H, (n,k,n)i\/sz (nk,m)—4H; (k)H3(n,k,m)

u,(n, k,m) =+ 21200 (65)
where

Hz(k) = k41‘04 (661)

H,(n,k,m) = bro(vZn?n? + b*k? — Qyep2n2n2 ke, ) (66.2)

Hs(n k,m) = (by? + ba,:k?)(yZn?n? + b%k? — aotk2n2n2+bkro) (66.3)

Numerical simulation

In order to illustrate the analytical results, for instance, the orthotropic rectangular plate is taken to be of
length 1.0 m and width 0.9 m. Other values used for the analysis are b =0.65m,g=9.81, & = % Yo =
0.2,

u= 8.128?. The values of the prestress ratio in the x-direction range between 0 and 4 000 000 N. The

critical velocities are plotted against prestress for various values of rotatory inertia and rotatory inertia for
various values of prestress ratio
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GRAPH SHOWING CRITICAL SPEED AGAINST PRESTRESS RATIO
FOR VARIOUS VALUES OF ROTATORY INERTIA CORRECTION
FACTOR
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Figure 1: The graph of critical speed against prestress for various values of rotatory inertia (ROT= ;)
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GRAPH SHOWING CRITICAL SPEED AGAINST PRESTRESS FOR VARIOUS VALUES
OF ROTATORY INERTIA CORRECTION FACTOR
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Figure 2: The graph of critical speed against prestress for various values of rotatory inertia correction factor
(ROT= o).
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GRAPH SHOWING CRITICAL SPEED AGAINST ROTATORY INERTIA
CORRECTION FACTOR FOR VARIOUS VALUES OF PRESTRESS
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Figure 3: Graph showing critical speed against rotatory inertia correction factor for various values of
prestress.
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GRAPH SHOWING PRESTRESS AGAINST CRITICAL SPEED WITH
VARIOUS VALUES OF ROTATORY INERTIA CORRECTION FACTOR
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Figure 4: graph of prestress against critical speed for various values of rotatory inertia correction factor
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GRAPH SHOWING CRITICAL SPEED PRESTRESS AGAINST PRESTRESS IN THE X-
DIRECTION FOR VARIOUS VALUES OF MASS RATIO

800 -
C
R 700 -
|
7 600 -
' 500
C e
A e

400 - Lo —— GAMO0 =0.25
L P

Lo e — - — GAMO = 0.55

300 - - -
S /../ ................ GAMO =0.95
P 200 - P
E T

et
E 100 - e
D //
O G T T T T T T T 1
0 50 100 150 200 250 300 350 400
PRESTRESS

Figure 5: Graph showing critical velocity against prestress for various values of mass ratio.
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GRAPH SHOWING CRITICAL SPEED AGAINST PRESTRESS IN THE Y-
DIRECTION FOR VARIOUS VALUES OF ROTATORY INERTIA CORRECTION
FACTOR
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Figure 6: graph showing critical speed versus prestress in the Y-direction for various values of rotatory
inertia correction factor
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GRAPH SHOWING CRITICAL SPEED AGAINST PRESTRESS IN X-DIRECTION
FOR VARIOUS VALUES OF ROTATORY INERTIA CORRECTION FACTOR
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Figure 7: graph showing critical speed against prestress in the x-direction for various values of rotatory
inertia correction factor.
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GRAPH SHOWING CRITICAL SPEED AGAINST PRESTRESS IN X-DIRECTION
FOR VARIOUS VALUES OF MASS RATIO
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Figure 8: Graph displaying critical speed against prestress in the Y-direction for various values of mass
ratio.
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3500 GRAPH SHOWING CRITICAL SPEED AGAINST PRESTRESS IN THE X-
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Figure 9: graph showing critical speed against prestress in the X-direction for various values of rotatory
inertia correction factor.

Figure 1 displays the graph of critical speed u, against prestress. From the graph, it is observed that the
critical speed u, increases with increased prestress for various values of rotatory inertia correction factor.
Thus, for high value of prestress, the structural design under consideration is more stable and reliable.
Similar submission goes for figure 2, where the critical speed u, behaves exactly the same way as u;.

Evidently, the critical speed increases with prestress for all values of rotatory inertia correction factor used.
Thus resonance is reach earlier for lower values of prestress than for high values of prestress. Thus, the
design is more stable and the risk of resonance is remote for high values of prestress.

In figure 3, it is clearly seen that increase in the values of rotatory inertia produce incr ease increase in in
critical speed which connotes lower risk of resonance.

Figure 5 depicts increase in prestress leading to increase in critical speed. For smaller values of mass ratio,
the critical speed is higher indicating that the durability and stability of the structure is guaranteed.

Figures 6, 7 and 9 shows that the rotatory inertia correction factor does not affect the system significantly
as the prestress values increase.

In figure 8, as the prestress values increase, the critical speed also increases. It is also observed that the
smaller the mass ratio, the greater the critical speed.

Conclusion
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This study concerns the problem of the dynamic response of a highly prestressed orthotropic rectangular
plate under a concentrated moving mass. The problem is governed by a fourth order non-homogeneous
partial differential equation. For the purpose of solution, the equation of motion of the plate problem is
presented in a dimensional form. It is observed that a small parameter multiplied the highest derivatives in
the governing differential equation. Thus, this type of dynamical problem is usually amenable to singular
perturbation technique. In particular the Method of Matched Asymptotic Expansions (MMAE) is used. This
technique constructs outer (core) and inner (boundary layer) solutions that are valid in partly disjoint
domains. These solutions are then matched in an intermediate domain where both asymptotic expansions
are valid. Consequently, an approximate uniformly valid solution in the entire domain of definition of the
rectangular plate is obtained with the rigorous use of Laplace transformation and the Cauchy residue
theorem. This solution is analyzed and some resonance conditions are obtained in the dynamical system.

A numerical simulation is carried out and the study reveals the following results:

@ the leading order solution and the first order correction are affected by the mass ratio and anisotropic
prestress. However, the effects of rotatory inertia correction factor is not appreciably noticed.

(b) As the prestress increases , the critical speed of the orthotropic rectangular plate traversed by moving
concentrated masses also increases.

.(c)  there may be more than one resonance condition in a dynamical system such as this which involves
plate flexure under moving concentrated masses.

(d) the smaller the mass ratio the better the improvement in critical speed.

Finally, this work has showcased the use of a valuable method for the solution of this class of dynamical
problems.
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