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Abstract 

Purpose: The purpose of this study is to derive a numerical solver for first order initial value 

problems of ordinary differential equation via the combination of Chebyshev polynomial and 

exponential function. 

Methodology: A new numerical method for solving Initial Value Problems of first order ordinary 

differential equation is developed. The method is based on finite difference method with a 

combination of Chebyshev polynomials and exponential function as interpolant. The accuracy, 

stability, consistency and convergence of the derived scheme were investigated. Numerical 

experiment was carried out by solving some test problems using the derived scheme. 

Findings: Results of the numerical experiment revealed that the derived method compared 

favourably with exact solutions and also performs better than some existing methods for solving 

initial value problems of first order.  

Unique Contribution to theory, practice and policy: The study therefore concludes that the 

method solves problems to expected level of accuracy and can thus be considered among the 

numerous methods suitable for solving IVPs of first order. 

Keywords: Finite difference method, first order differential equations, Chebyshev polynomials, 

initial value problem, accuracy, consistency, stability, convergence. 

1.0 INTRODUCTION 

Ordinary differential equations (ODEs) and Partial Differential Equations (PDEs) play vital roles 

in modelling real life phenomena in various disciplines including Natural Sciences, Engineering, 

Physics, Economics and Biology. Since the importance of ordinary and partial differential 

equations is increasing, finding solutions to these equations has attracted many researchers in 

applied mathematics so as to develop different methods to solve such equations. It is a known fact 

that analytical solutions for some ODEs and PDEs are very hard and time-impossible to obtain. 
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As an alternative, Numerical Analysts seek approximate solutions that can be as accurate as 

possible with a reasonable error bound. 

We must establish the fact that many researchers have derived various numerical methods for 

solving ordinary and partial differential equations of different forms. The most common numerical 

methods are single and multistep methods in the form of Tau method as represented by Adeniyi 

and Onumanyi (1991), Collocation Method (Taiwo, 2005), Legendre Collocation method (Guner 

and Yalcinbas, 2013), Adomian Decomposition Method (Ogunride, 2019) and Non-Standard 

Finite Difference Method which was used by Ibiola and Obayomi (2012) as well as Obayomi 

(2012) to derive numerical schemes for initial value problems of ordinary differential equations. 

Other approaches to developing numerical integrators for initial value problems include Standard 

Finite Difference Method which was adopted in Fadugba and Idowu (2019), Ogunride and Ayinde 

(2017) and Lambert (1973), among others.  

There is a continuous need for developing more and more efficient methods for solving initial 

value problems of ODEs. The efficiency of any numerical method depends on the stability, 

accuracy, consistency and convergence properties of the method. The accuracy properties of 

different methods are determined by considering the order of convergence as well as the truncation 

error coefficients of the various methods. 

From the foregoing, we propose a new method using the standard finite difference approach as 

used in Fadugba and Idowu (2019) to derive a numerical scheme that improves on the accuracy 

and consequently the efficiency of existing methods that have been developed for solving first 

order initial value problem of ODEs using the same approach. 

2.0 METHODOLOGY 

In this paper, we derive a new numerical scheme based on the local representation of the theoretical 

solution to initial value problems of the form: 

 𝑦′ = 𝑓(𝑥, 𝑦),    𝑦(𝑎) = 𝜂 in the interval [𝑎, 𝑏] by interpolating function  𝐹(𝑥) = ∑ 𝑎𝑗
3
𝑗=0 𝑇𝑗(𝑥) +

𝑎4𝑒−𝑥 where 𝑎0 , 𝑎1  𝑎2 , 𝑎3 , 𝑎4 are real undetermined coefficients and 𝑇𝑗(𝑥) are Chebyshev 

polynomials of first kind. 

2.1 Derivation of the Proposed Numerical Scheme 

In this section, we present the derivation of the proposed numerical method by Chebyshev function 

of the form  

𝐹(𝑥) = ∑ 𝑎𝑗
3
𝑗=0 𝑇𝑗(𝑥) + 𝑎4𝑒−𝑥          (1) 

Considering the initial value problem: 

𝑦′ = 𝑓(𝑥, 𝑦); 𝑦(𝑥0) = 𝑦0, 𝑥 ∈ [𝑎, 𝑏], −∞ < 𝑦 < ∞    (2)                                                                                    

                 

We assume that the theoretical solution 𝑦(𝑥) to (2) can be locally represented in the 

interval  [𝑥𝑛,  𝑥𝑛+1], 𝑛 ≥ 0 by the interpolating polynomial (1). 

From (1), we have 

 𝐹(𝑥) = 𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥) + 𝑎3𝑇3(𝑥) + 𝑎4𝑒−𝑥           
 (3)                                                                               
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where  𝑎0, 𝑎1 , 𝑎2  𝑎3 and 𝑎4  are constants and 𝑇0(𝑥),  𝑇1(𝑥), 𝑇2(𝑥) and 𝑇3(𝑥) are first, second, 

third and fourth Chebyshev polynomials of the first kind. 

Let,   

 𝑇0(𝑥) = 1         (4) 

       𝑇1(𝑥) = 𝑥                        (5) 

      𝑇3(𝑥) = 2𝑥2 − 1                    (6) 

      𝑇3(𝑥) = 4𝑥3 − 3𝑥                (7) 

Using (3), (4), (5), (6) and (7), we obtain 

𝐹(𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2(2𝑥2 − 1) + 𝑎3(4𝑥3 − 3𝑥) +  𝑎4𝑒−𝑥                                                      (8) 

We shall assume that 𝑦𝑛 is a numerical estimate to the theoretical solution 𝑦(𝑥) and 
 
𝑓

𝑛
=

𝑓(𝑥𝑛, 𝑦𝑛). We define mesh points as follows: 

 𝑥𝑛 = 𝑥0 + 𝑛ℎ,  𝑛 = 0,  1,  2, … 

The following constraints are imposed on the interpolating polynomial (8) in order to obtain the 

undetermined coefficients: 

The interpolating function must coincide with the theoretical solution at 𝑥 = 𝑥𝑛 and 𝑥 = 𝑥𝑛+1, so 

that  𝐹(𝑥𝑛) =  𝑎0 + 𝑎1𝑥𝑛 + 𝑎2(2𝑥𝑛
2 − 1) + 𝑎3(4𝑥𝑛

3 − 3𝑥𝑛) + 𝑎4𝑒−𝑥𝑛    (9)                                                                                                 

and 

 𝐹(𝑥𝑛+1) =  𝑎0 + 𝑎1𝑥𝑛+1 + 𝑎2(2𝑥𝑛+1
2 − 1) + 𝑎3(4𝑥𝑛+1

3 − 3𝑥𝑛+1)+𝑎4𝑒−𝑥𝑛+1  (10)  

The derivatives 𝐹′(𝑥), 𝐹′′(𝑥),…, 𝐹𝑛(𝑥) coincide with 𝑓(𝑥),  𝑓′(𝑥),…, 𝑓𝑛−1(𝑥) respectively. i.e. 

 𝐹′(𝑥𝑛) = 𝑓𝑛           (11) 

 𝐹′′(𝑥𝑛) = 𝑓′
𝑛

                (12) 

 𝐹′′′(𝑥𝑛) = 𝑓′′
𝑛

             (13)    

𝐹′′′′(𝑥)  =  𝑓𝑛
′′′            (14)                     

This implies that 

 𝐹′(𝑥) = 𝑎1 + 4𝑥𝑛𝑎2 + 𝑎3(12𝑥𝑛
2 − 3) − 𝑎4𝑒−𝑥𝑛  =  𝑓𝑛                             

 (15) 

 𝐹′′(𝑥) = 4𝑎2 + 24𝑎3𝑥𝑛 + 𝑎4𝑒−𝑥𝑛      =  𝑓𝑛
′        (16) 

𝐹′′′(𝑥) = 24𝑎3 − 𝑎4𝑒−𝑥𝑛      =  𝑓𝑛
′′         (17) 

𝐹′′′′(𝑥) = 𝑎4𝑒−𝑥𝑛      =  𝑓𝑛
′′′         (18) 

From (18), 

𝑎4 =  
𝑓𝑛

′′′

𝑒−𝑥𝑛
                                         (19)                                                                                                                                                                         

Substituting (19) into (17), yields          
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 𝑎3 =
𝑓𝑛

′′+𝑓𝑛
′′′

24
                                                                (20) 

Putting (19) and (20) in (16), we have: 

 4 𝑎2 = 𝑓𝑛
′ − 24𝑎3𝑥𝑛 − 𝑎4 𝑒−𝑥𝑛                                                                                                            (21) 

        = 𝑓𝑛
′ − 24𝑥𝑛 (

𝑓𝑛
′′+𝑓𝑛

′′′

24
) −

𝑓𝑛
′′′

 𝑒−𝑥𝑛
( 𝑒−𝑥𝑛)                                                    

(22)                                                                                                                                                                                         

From (22),  

 𝑎2 =
(𝑓𝑛

′−𝑥𝑛𝑓𝑛
′′  −𝑥𝑛𝑓𝑛

′′′−𝑓𝑛
′′′)

4
                                                 (23) 

Evaluating 𝑎1 using equations (15), (19), (20) and (23) yields 

𝑎1 = 𝑓𝑛 − 4𝑎2𝑥𝑛 − 𝑎3(12𝑥𝑛
2 − 3) + 𝑎4𝑒−𝑥𝑛      (24) 

𝑎1 = 𝑓𝑛 − 4𝑥𝑛 (
(𝑓𝑛

′−𝑥𝑛𝑓𝑛
′′  −𝑥𝑛𝑓𝑛

′′′−𝑓𝑛
′′′)

4
) − (12𝑥𝑛

2 − 3) (
𝑓𝑛

′′+𝑓𝑛
′′′

24
) + 𝑒−𝑥𝑛( 

𝑓𝑛
′′′

𝑒−𝑥𝑛
   )  

 (25) 

Further simplification of equation (25) gives 

𝑎1 = 𝑓𝑛 − 𝑥𝑛𝑓𝑛
′ + (

𝑥𝑛
2

2
+

1

8
) 𝑓𝑛

′′ + (
𝑥𝑛

2

2
+ 𝑥𝑛 +

1

8
) 𝑓𝑛

′′′     

 (26) 

The undetermined coefficients 𝑎1, 𝑎2 and 𝑎3  and 𝑎4 are given by equations (26), (23), (20)  and 

(19) respectively. 

By definition, the mesh points 𝑥𝑛 and 𝑥𝑛+1 are given as: 

 𝑥𝑛 = 𝑥0 + 𝑛ℎ                              (27) 

               𝑥𝑛+1 = 𝑥0 + (𝑛 + 1)ℎ           (28) 

Setting 𝑥0 = 0 in (27) and (28), we obtain 

                 𝑥𝑛 = 𝑛ℎ   

  𝑥𝑛+1 = (𝑛 + 1)ℎ  

Such that  

 𝑥𝑛+1 − 𝑥𝑛 = (𝑛 + 1)ℎ − (𝑛ℎ) = ℎ              (29) 

                 𝑥𝑛+1
2 − 𝑥𝑛

2 = [(𝑛 + 1)ℎ]2 − [(𝑛ℎ)]2 = ℎ2(2𝑛 + 1)                                        
 (30) 

                𝑥𝑛+1
3 − 𝑥𝑛

3 = [(𝑛 + 1)ℎ]3 − [(𝑛ℎ)]3 = ℎ3(3𝑛2 + 3𝑛 + 1)                                             (31) 

Subtracting (9) from (10) yields 

  𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) =  [𝑎0 + 𝑎1𝑥𝑛+1 + 𝑎2(2𝑥𝑛+1
2 − 1) + 𝑎3(4𝑥𝑛+1

3 − 3𝑥𝑛+1)] − [𝑎0 +

𝑎1𝑥𝑛 + 𝑎2(2𝑥𝑛
2 − 1) + 𝑎3(4𝑥𝑛

3 − 3𝑥𝑛)] + 𝑎4(𝑒−𝑥𝑛+1 − 𝑒−𝑥𝑛) 

        = 𝑎1(𝑥𝑛+1 − 𝑥𝑛) + 𝑎2(2𝑥𝑛+1
2 − 2𝑥𝑛

2) + 𝑎3(4𝑥𝑛+1
3 − 4𝑥𝑛

3 − 3𝑥𝑛+1 + 3𝑥𝑛) +
𝑎4(𝑒−𝑥𝑛+1 − 𝑒−𝑥𝑛)     (32) 
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Substituting (29), (30) and (31) into (32), yields 

 𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = 𝑎1(ℎ) + 2𝑎2ℎ2(2𝑛 + 1) + 𝑎3[4ℎ3(3𝑛2 + 3𝑛 + 1) − 3ℎ] +
𝑎4(𝑒−(𝑛+1)ℎ − 𝑒−𝑛ℎ)      (33)                            

From equation (19), with 𝑥𝑛 = 𝑛ℎ  

 𝑎4 =  
𝑓𝑛

′′′

𝑒−𝑛ℎ           (34) 

Also,               

𝑎2 =
𝑓𝑛

′−𝑛ℎ𝑓𝑛
′′−𝑛ℎ𝑓𝑛

′′−𝑓𝑛
′′′

4
          

 (35) 

and  

𝑎1 = 𝑓𝑛 − 𝑛ℎ𝑓𝑛
′ + (

(𝑛ℎ)2

2
+

1

8
) 𝑓𝑛

′′ + (
(𝑛ℎ)2

2
+ 𝑛ℎ +

9

8
) 𝑓𝑛

′′′     

 (36) 

Substituting (20), (34), (35)  and (36) into (33), yields 

 𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = (ℎ)[𝑓𝑛 − 𝑛ℎ𝑓𝑛
′ + (

(𝑛ℎ)2

2
+

1

8
) 𝑓𝑛

′′ + (
(𝑛ℎ)2

2
+ 𝑛ℎ +

9

8
) 𝑓𝑛

′′′] + 2ℎ2(2𝑛 +

1)[ 
𝑓𝑛

′−𝑛ℎ𝑓𝑛
′′−𝑛ℎ𝑓𝑛

′′−𝑓𝑛
′′′

4
] 

+
𝑓𝑛

′′+𝑓𝑛
′′′

24
[4ℎ3(3𝑛2 + 3𝑛 + 1) − 3ℎ] +

𝑓𝑛
′′′

𝑒−𝑛ℎ [𝑒−𝑛ℎ(𝑒−𝑛ℎ − 1]         

 (37) 

Simplifying equation (37) yields 

  𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) = ℎ𝑓𝑛 +
ℎ2(𝑓𝑛

′−𝑓𝑛
′′′)

2
+ ℎ3 (𝑓𝑛

′′+𝑓𝑛
′′′)

6
+ (ℎ + 𝑒−ℎ − 1)𝑓𝑛

′′′    

 (38) 

But 

 𝐹(𝑥𝑛+1) − 𝐹(𝑥𝑛) =  𝑦𝑛+1 −  𝑦𝑛         
 (39) 

Thus, 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓𝑛 +
ℎ2(𝑓𝑛

′−𝑓𝑛
′′′)

2
+ ℎ3 (𝑓𝑛

′′+𝑓𝑛
′′′)

6
+ (ℎ + 𝑒−ℎ − 1)𝑓𝑛

′′′              

 (40)                      

Equation (40) is the proposed numerical method derived from a combination of Chebyshev 

polynomial of the first kind and exponential function. The derived method is an improvement on 

Fadugba and Idowu (2019), which has hitherto compared favourably with some existing schemes.  
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3.0 Qualitative Analysis of the Method 

In this section, the analysis of the properties of the derived numerical method is presented. These 

properties include the Local Truncation Error, Consistency, Stability and consequently its 

Convergence. 

3.1   Local Truncation Error (LTE) 

In order to check the order of the derived method, we subtract the algorithms of the numerical 

scheme (40) from the well- known Taylor’s series expansion for 𝑦(𝑥) in power of ℎ which is 

described below. 

Considering the Taylor series expansion of the form 

 𝑦(𝑥𝑛 + ℎ) = 𝑦(𝑥𝑛) +
ℎ𝑦′(𝑥𝑛)

1!
+

ℎ2𝑦′′(𝑥𝑛)

2!
+

ℎ3𝑦′′′(𝑥𝑛)

3!
+ 𝑂(ℎ4)    

 (41) 

By assumptions of equations (11), (12) and (13), we have 

𝐹′(𝑥𝑛) = 𝑦′(𝑥𝑛) = 𝑓𝑛           (42)  

𝐹′′(𝑥𝑛) = 𝑦′′(𝑥𝑛) = 𝑓′
𝑛

           (43)  

𝐹′′′(𝑥𝑛) = 𝑦′′′(𝑥𝑛) = 𝑓′′
𝑛

         (44) 

𝐹′′′′(𝑥𝑛) = 𝑦′′′′(𝑥𝑛) = 𝑓𝑛
′′′         (45) 

Substituting equations (42) to (45) into equation (40), we obtain 

LTE = 𝑦(𝑥𝑛 + ℎ) − 𝑦𝑛+1         (46) 

         = [ 𝑦(𝑥𝑛) +
ℎ𝑦′(𝑥𝑛)

1!
+

ℎ2𝑦′′(𝑥𝑛)

2!
+

ℎ3𝑦′′′(𝑥𝑛)

3!
+ 𝑂(ℎ4)] − [𝑦𝑛 +ℎ𝑓𝑛 +

ℎ2(𝑓𝑛
′−𝑓𝑛

′′′)

2
+

ℎ3 (𝑓𝑛
′′+𝑓𝑛

′′′)

6
 

+(ℎ + 𝑒−ℎ − 1)𝑓𝑛
′′′]            (47) 

Replacing the term 𝑒−ℎ by Maclaurin’s series gives 

LTE = [𝑦(𝑥𝑛) +
ℎ𝑦′(𝑥𝑛)

1!
+

ℎ2𝑦′′(𝑥𝑛)

2!
+

ℎ3𝑦′′′(𝑥𝑛)

3!
+ 𝑂(ℎ4)] − [𝑦𝑛 +ℎ𝑓𝑛 +

ℎ2(𝑓𝑛
′−𝑓𝑛

′′′)

2
+ ℎ3 (𝑓𝑛

′′+𝑓𝑛
′′′)

6
 

   +(ℎ + (1 − ℎ +
ℎ2

2
−

ℎ3

6
+ ⋯ ) − 1)𝑓𝑛

′′′]       (48)   

On further simplification of (48), we obtain the local truncation error whose leading term contains 

ℎ4. 

That is, LTE= 𝑂(ℎ4) . This implies that the new numerical scheme is of order three. 

3.2 Consistency Property of the Method 

A numerical method is consistent if the truncation error tends to zero as the step size h approaches 

zero. 

Therefore 

lim
ℎ→0

𝐿𝑇𝐸

ℎ
= 0           (49) 
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lim
ℎ→0

𝑂(ℎ4)

ℎ
= 0          (50) 

According to Lambert (1973, 1991) a numerical scheme is consistent if the order is ≥ 1. The 

developed numerical scheme is thus consistent, since it is of order three. 

3.3 Stability of the Derived Method 

The idea of stability may be taken in different contexts: it may be associated with the specific 

numerical technique used, with the step size used in numerical computation or with the particular 

problem being solved. 

For stability analysis of the proposed method (40), we consider the test problem 

𝑦′ =– 𝜆𝑦,  𝑦(0) = 1         (51) 

whose theoretical solution is of the form 𝑦(𝑥) = 𝑒−𝜆𝑥, 𝜆 > 0 where 𝜆 is in general a complex 

constant. 

The exact solution of equation (51) at point 𝑥 = 𝑥𝑛+1 is  

𝑦(𝑥𝑛+1) = 𝑒−𝜆(𝑥𝑛+1)  =  𝑒−𝜆(𝑥𝑛+ℎ) 

         = 𝑒−𝜆(𝑥𝑛). 𝑒−𝜆ℎ       (52) 

From the numerical scheme (40), 

 𝑦𝑛+1 = 𝑦𝑛 + ℎ(−𝜆𝑒−𝜆𝑥𝑛) +
ℎ2

2
(𝜆2𝑒−𝜆𝑥𝑛 − 𝜆4𝑒−𝜆𝑥𝑛) +

ℎ6

6
(−𝜆3𝑒−𝜆𝑥𝑛 + 𝜆4𝑒−𝜆𝑥𝑛) + (ℎ +

𝑒−ℎ − 1)(𝜆4𝑒−𝜆𝑥𝑛)           
 (53) 

𝑦𝑛+1 = 𝑦𝑛 + ℎ(−𝜆𝑦𝑛) +
ℎ2

2
(𝜆2𝑦𝑛 − 𝜆4𝑦𝑛) +

ℎ6

6
(−𝜆3𝑦𝑛 + 𝜆4𝑦𝑛) + (ℎ + 𝑒−ℎ − 1)(𝜆4𝑦𝑛)               

(54) 

𝑦𝑛+1 = 𝑦𝑛[(1 − ℎ(𝜆) +
ℎ2

2
(𝜆2 − 𝜆4) +

ℎ6

6
(−𝜆3 + 𝜆4) + (ℎ + 𝑒−ℎ − 1)(𝜆4)]  

 (55) 

𝑦𝑛+1 = 𝑦𝑛[1 − ℎ𝜆 +
ℎ2𝜆2

2
−

ℎ2𝜆4

2
−

ℎ6𝜆3

6
+

ℎ6𝜆4

6
 +(ℎ + 𝑒−ℎ − 1)(𝜆4)]   

 (56) 

Let  

𝐵 = 1 − ℎ𝜆 +
ℎ2𝜆2

2
−

ℎ2𝜆4

2
−

ℎ6𝜆3

6
+

ℎ6𝜆4

6
 +(ℎ + 𝑒−ℎ − 1)(𝜆4)    

 (57) 

Then 

 𝑦𝑛+1 = 𝐵𝑦𝑛          (58) 
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Comparing (52) and (57), shows that the factor B is merely an approximation for the factor 𝑒−𝜆ℎin 

the exact solution. The error growth factor B can be controlled by ‖𝐵‖ ≤ 1, so that the error may 

not magnify. Thus, the stability of the proposed method requires that 

 ‖1 − ℎ𝜆 +
ℎ2𝜆2

2
−

ℎ2𝜆4

2
−

ℎ6𝜆3

6
+

ℎ6𝜆4

6
 + (ℎ + 𝑒−ℎ − 1)(𝜆4)‖ ≤ 1    (59) 

Setting 𝑧 =  ℎ𝜆, then equation (59) becomes 

 ‖1 − 𝑧 +
𝑧2

2
−

𝑧2𝜆2

2
−

ℎ6𝜆3

6
+

ℎ6𝜆4

6
 + (ℎ + 𝑒−ℎ − 1)(𝜆4)‖ ≤ 1    

 (60) 

which shows that the method is stable 

3.4 Convergence of the Method 

According to Lambert (1973), a numerical method is convergent if they are consistent and stable. 

Since the derived method satisfies consistency and stability properties, we conclude that the 

method is convergent. 

4.0 FINDINGS AND PRESENTATION 

The performance of the derived method is examined on some sampled problems taken from 

Fadugba and Idowu (2019), Ogunride and Ayinde (2017) and Sunday et al (2014). The numerical 

solutions obtained using the proposed method are compared with the exact solutions and with 

solutions from a method of similar derivation. The numerical experiments were performed with 

the aid of MATLAB. 

The following notations are used in the tables below: 

ERR -   Computed-Solution in Fadugba and Idowu (2019)   ERO - Error in (40) 

 ERF - Error in Fadugba and Idowu (2019)  

Problems 1 

Consider the initial value problem: 

𝑦′ = 𝑦,    𝑦(0) = 1,      0 ≤ 𝑥 ≤ 1,      ℎ = 0.1 

whose exact solution is obtained as 𝑦(𝑥) = 𝑒𝑥. 

With values of the step length ℎ = 0.1, 0.01, 0.001 and 0.0001, a comparative results analyses 

based on maximum error of the derived method, that in Fadugba and Idowu (2019)  as well as the 

exact solution is presented in Table 1. 
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Table 1: A Comparative Results Analysis of the Deriveed Scheme, the Exact Solution and 

ERR for Problem1. 

h 𝒙𝒏 
New 

Scheme 

Exact 

Solution 
ERR ERO ERF 

0.1 
1.00000000

00 

2.71827772

8 
2.718281829 

2.71828182

85 

4.10030 E-

07 

2.05028 E-

04 

0.01 
1.00000000

00 

2.71828182

8 
2.718281829 

2.71828160

42 

4.00000 E-

10 

2.24300 E-

07 

0.001 
1.00000000

00 

2.71828182

9 
2.718281829 

2.71828182

82 
0.00000 

2.00000 E-

10 

0.000

1 

1.00000000

00 

2.71828182

9 
2.718281829 

2.71828182

85 
0.00000 0.00000 

 It can be seen from Table1 that the solution obtained using the derived scheme coincides with the 

exact solution when ℎ = 0.01 compared to when ℎ = 0.0001 using Fadugba and Idowu (2019) . 

This indicates that the derived method is more efficient, given the reduced number of iterations 

needed (reduction by multiple of 10) to achieve the same level of accuracy in Fadugba and Idowu 

(2019) . In addition, graphs of the exact solution, approximate solution and maximum errors for 

the various step sizes are given in the figures that follow. 

Figure 1: Comparison between Exact Solution and Solution from Derived Scheme for 

Problem 1 

 

0 . 1 0 . 0 1 0 . 0 0 1 0 . 0 0 0 1

Y-
-V

A
LU

E

STEP SIZE
NEW SCHEME EXACT
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Figure 2: Maximum Errors in the Derived Method for problem 1 

Problems 2 

Consider the highly stiff ODE taken from [13] given by 

 𝑦′ = −10(𝑦 − 1)2,    𝑦(0) = 2,     0 ≤ 𝑥 ≤ 1,  

The exact solution to the problem is 𝑦(𝑥) = 1 +
1

1+10𝑥
. 

The derived method is employed in solving Problem 2 with different values of the step length 

given as ℎ = 0.1, 0.01, 0.001 and 0.0001 and the result compared with the exact solution as shown 

in Table 2. 

Table 2: Comparative Results Analyses of the Derived Scheme and the Exact Solution for 

Problem 2.  

h 𝒙𝒏 New Scheme Exact ERO 

0.1 
1.0000000000000

0 

1.13256968434151

8 

1.09090909090909

1 

0.04166059343242

7 

0.01 
1.0000000000000

0 

1.09090942502124

0 

1.09090909090909

0 

0.00000033411215

0 

0.001 
1.0000000000000

0 

1. 

090909090928361 

1.09090909090909

1 

0.00000000001927

0 

0.0001 
1.0000000000000

0 

1. 

090909090899365 

1.09090909090909

1 

0.00000000000972

6 
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Similarly, graphs of the exact solution, approximate solution and maximum errors for the various 

step sizes are presented in the figures below for problem 2. 

 

Figure 3: Comparison between Exact Solution and Solution from Derived Scheme for 

Problem 2 

 

Figure 4: Maximum Errors in the Derived Method for Problem 2 
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Problem 3 

Consider the initial value problem: 

 𝑦′ = 2𝑥 − 𝑦,     𝑦(0) = 1,      0 ≤ 𝑥 ≤ 1 

with exact solution  𝑦(𝑥) = 3𝑒−𝑥 − 2𝑥 − 2. 

A similar comparison to that given in problem 2 is shown in Table 3. 

Table 3: A comparative results analyses of the proposed scheme and the exact solution of 

Problem 3. 

h 𝒙𝒏 New Scheme Exact Solution ERO 

0.1 1.0000000000 1.1036128808 1.1036383235 0.0000254428 

0.01 1.0000000000 1.1036383012 1.1036383235 0.0000000224 

0.001 1.0000000000 1.1036383235 1.1036383235 0.0000000000 

0.0001 1.0000000000 1.1036383235 1.1036383235 0.0000000000 

We equally present the graphs of the exact solution, approximate solution and maximum errors for 

the various step sizes for the given problem 3 in the figures below.  

 

Figure 5: Comparison between Exact Solution and Solution from Derived Scheme for 

Problem 3 
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Figure 6: Maximum Errors in the Derived Method for Problem 3 

Problems 4 

Consider the non-autonomous differential equation: 

𝑦′ = 2𝑥2 − 𝑦,      𝑦(0) = −1,       0 ≤ 𝑥 ≤ 1  

whose exact solution is  𝑦(𝑥) = −5𝑒−𝑥 + 2𝑥2 − 4𝑥 + 4  

Again, the IVP is solved with values of ℎ = 0.1, 0.01, 0.001 and 0.0001 and the observation 

presented in Table 4 

Table 4: The Comparative Results Analyses of the Derived Scheme and the Exact Solution 

for Problem 4.  

h 𝒙𝒏 New Scheme Exact Solution ERO 

0.1 1.00000000000000

0 

0.16060279414278

8 

0.16060279414278

8 

0.00000000000000

0 

0.01 1.00000000000000

0 

0.16060279414277

6 

0.16060279414278

8 

0.00000000000001

3 

0.001 1.00000000000000

0 

0.16060279414292

3 

0.16060279414278

8 

0.00000000000013

5 

0.000

1 

1.00000000000000

0 

0.16060279414092

9 

0.16060279414278

8 

0.00000000000186

0 
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As in the previous examples, we plot the graphs of the exact solution, approximate solution and 

maximum errors for the various step sizes for the given problem 4 as shown in the figures below. 

 

Figure7: Comparison between Exact Solution and Solution from Derived Scheme for 

Problem 4 
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Figure 8: Maximum Errors in the Derived Method for Problem 4 

5.0 CONCLUSION  

In this paper, numerical solution of Initial Value Problems of first order ordinary differential 

equation is obtained using finite difference method with a combination of Chebyshev and 

exponential function as the basis function. The method yielded a single step scheme from which 

approximate solutions were obtained and the results compared with exact solutions as well as with 

an existing method of similar derivation as shown in Tables 1 to 4. From the results presented, it 

is apparent that the derived scheme gave good results for the test problems considered. The results 

further revealed that the derived scheme performed well as the step length (ℎ) decreases. It is also 

observed that Figures 1, 2, 3, 4, 5, 6, 7 and 8 show the behavior of the scheme with regards to the 

exact solutions and maximum errors in the method for various step sizes. We therefore conclude 

that the method solves problems to expected level of accuracy and can thus be considered among 

the numerous methods suitable for solving IVPs of first order. 
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