
International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

11 
 

    

    

 
 
 
 
 
 
 
 

DevSecOps-Driven Security Framework for CI/CD Pipeline Risk Mitigation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

12 
 

    

DevSecOps-Driven Security Framework for CI/CD Pipeline Risk Mitigation 

Arpit Mishra 

Intercontinental Exchange, USA 

https://orcid.org/0009-0005-4859-4113  

Accepted: 27th June, 2025, Received in Revised Form: 14th July, 2025, Published: 30th July, 2025 

Abstract 

Modern software development organizations face escalating security challenges within their 

Continuous Integration and Continuous Deployment (CI/CD) pipeline infrastructure, necessitating 

robust DevSecOps methodologies to counter sophisticated vulnerabilities. Contemporary 

DevSecOps frameworks establish security controls at every stage of the pipeline lifecycle, 

systematically addressing threats that pose risks to software delivery operations and organizational 

assets. By implementing structured security integration strategies, organizations achieve both 

velocity and protection without sacrificing either priority. The zero-trust frameworks analyzed 

within this context demonstrate significant efficacy when applied to pipeline components, 

establishing verification checkpoints at critical junctures. Policy-as-code solutions further 

automate compliance verification, ensuring that security requirements remain enforceable across 

evolving infrastructure configurations. Security benchmarking results demonstrate substantial 

improvements in vulnerability detection timeliness, threat containment capabilities, and overall 

defensive posture when the prescribed controls operate cohesively. The framework establishes 

governance structures, validation mechanisms, and monitoring protocols that function effectively 

within rapid deployment cycles while maintaining appropriate security guardrails. Through 

systematic implementation of these integrated security practices, development teams and security 

professionals collaborate effectively to create resilient CI/CD environments capable of 

withstanding evolving threats while preserving deployment velocity. 

Keywords: DevSecOps, CI/CD Pipeline Security, Zero-Trust Framework, Container Security, 

Security Automation 

  

https://orcid.org/0009-0005-4859-4113
https://orcid.org/0009-0005-4859-4113


International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

13 
 

    

1. Introduction  

The integration of security controls throughout software delivery pipelines transforms traditional 

deployment models into resilient systems capable of withstanding emerging threats [1]. Rather 

than implementing security measures as final validation steps, contemporary protection 

frameworks incorporate defensive mechanisms from initial code creation through production 

deployment [2]. Detecting potential weaknesses during early development stages dramatically 

reduces remediation complexity compared to post-deployment discovery scenarios [1]. When 

developers receive immediate feedback regarding security implications during coding activities, 

they incorporate defensive patterns into their standard practices [2]. Embedding automated 

security validation tools directly within compilation and testing sequences provides continuous 

visibility into potential weaknesses [1]. These mechanisms establish verification checkpoints that 

identify problematic patterns before they propagate through subsequent pipeline stages [2]. 

Implementing continuous observation mechanisms across deployment environments enables 

detection of anomalous behaviors that might indicate compromise attempts [1]. These monitoring 

systems establish baseline operational parameters and identify deviations requiring investigation 

[2]. Creating structured communication channels between runtime environments and development 

teams ensures that security insights propagate effectively [1]. This intelligence circulation enables 

rapid adaptation to emerging threat patterns identified during production operations [2]. 

Distributing security responsibilities across technical disciplines eliminates traditional silos that 

impede effective protection [1]. When development, security, and operational specialists share 

accountability for defensive outcomes, protection measures become integrated rather than imposed 

[2]. Establishing regular knowledge exchange protocols ensures all stakeholders maintain 

awareness of current security priorities [1]. These communication frameworks prevent information 

fragmentation that typically undermines cohesive protection strategies [2]. 

Mechanizing repetitive security validation procedures reduces manual intervention requirements 

while increasing consistency [1]. These automation patterns enable security activities to maintain 

pace with accelerated development cycles without becoming bottlenecks [2]. Creating consistent 

security integration patterns across environments ensures that protective measures function 

identically regardless of deployment context [1]. This standardization prevents security 

discrepancies between development, testing, and production environments [2]. Implementing 

layered security controls throughout delivery pipelines creates defense-in-depth protection that 

significantly improves overall system resilience [1]. These overlapping safeguards prevent single 

points of failure that might otherwise enable compromise [2]. Continuous verification of 

compliance requirements throughout development activities ensures that systems maintain 

appropriate regulatory alignment from inception [1]. This ongoing validation prevents compliance 

drift that typically occurs when verification occurs only during final deployment stages [2]. 

 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

14 
 

    

Table 1: Evolution of DevSecOps Implementation in CI/CD Pipelines (2020-2025) [1,2]  

Year Key Development 
Adoption 

Rate 
Primary Focus Area 

Security 

Integration Point 

2020 
Initial DevSecOps 

Framework 
32% 

Vulnerability 

Scanning 
Post-Build Phase 

2021 
Automated Security 

Testing 
45% 

SAST 

Implementation 
Build Process 

2022 Shift-Left Movement 58% 
Developer Security 

Training 
Code Commit Stage 

2023 
Policy-as-Code 

Emergence 
67% 

Compliance 

Automation 
Pre-Deployment 

2024 
Zero-Trust Pipeline 

Architecture 
78% Identity Verification All Pipeline Stages 

2025 
AI-Enhanced Threat 

Detection 
89% Behavioral Analysis 

Runtime 

Environment 

 

2. CI/CD Security Landscape  

The continuous integration and continuous deployment (CI/CD) infrastructure presents a complex 

and expanding attack surface that has evolved significantly in recent years [3]. As organizations 

increasingly rely on automated pipelines for software delivery, these systems have become high-

value targets for sophisticated threat actors seeking privileged access to development environments 

and production systems [4]. The interconnected nature of modern CI/CD toolchains creates 

multiple entry points that malicious actors can exploit to gain persistent access to critical systems. 

2.1. Threat Vectors in Modern CI/CD Pipelines  

Code Injection Vulnerabilities 

CI/CD pipelines frequently execute code and scripts with elevated privileges, creating 

opportunities for malicious code insertion at multiple stages [3]. Build systems typically operate 

with extensive access rights to facilitate deployment activities, making them attractive targets for 

privilege escalation attempts. When build scripts execute arbitrary code from repositories without 

proper validation, attackers can inject malicious commands that execute within privileged 

contexts. These injection vulnerabilities frequently manifest in build configuration files, 

dependency specifications, and automated test scripts that execute during pipeline operations [4]. 

Supply Chain Compromises 

The software supply chain represents an increasingly exploited attack vector as threat actors target 

upstream dependencies rather than hardened production environments [3]. Malicious packages 

introduced into dependency ecosystems can propagate downstream into multiple organizations' 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

15 
 

    

software through automated dependency resolution in CI/CD systems. Modern build processes 

typically incorporate dozens or hundreds of third-party dependencies, creating a vast potential 

attack surface through transitive dependencies that organizations may not directly control or verify 

[4]. The automated nature of dependency resolution in CI/CD pipelines exacerbates this risk by 

rapidly incorporating new or updated packages without sufficient security validation. 

Infrastructure Security Gaps 

The infrastructure supporting CI/CD operations frequently contains security deficiencies 

stemming from prioritizing operational functionality over security controls [3]. Ephemeral build 

environments often lack proper network segmentation, allowing lateral movement between 

pipeline stages and potentially into production environments. Authentication mechanisms for 

pipeline components frequently rely on long-lived credentials with excessive permissions that, 

once compromised, provide extensive system access [4]. Configuration management tools and 

infrastructure-as-code templates may contain hardcoded secrets or default configurations that 

create persistent vulnerability patterns across deployment environments. 

2.2. Conventional Security Approaches and Limitations  

Traditional Testing Bottlenecks 

Conventional security validation approaches create significant pipeline bottlenecks when 

implemented without integration considerations [3]. Traditional vulnerability scanning tools 

designed for periodic assessment rather than continuous integration often require extended 

execution timeframes incompatible with rapid deployment cycles. These tools typically operate as 

isolated systems with limited integration capabilities, necessitating manual workflow interruptions 

to incorporate security findings [4]. The resulting tension between security thoroughness and 

deployment velocity frequently leads to security steps being bypassed or reduced in scope to 

maintain development momentum. 

Manual Review Challenges 

Security review processes centered around manual inspection cannot scale effectively within 

accelerated deployment environments [3]. As deployment frequency increases, traditional code 

review methodologies become unsustainable without substantial security team expansion. The 

volume of changes flowing through modern pipelines overwhelms manual analysis capabilities, 

leading to superficial reviews or sampling approaches that miss critical vulnerabilities [4]. The 

specialized expertise required for effective security analysis creates additional resource constraints 

that limit comprehensive coverage across all pipeline components. 

Integration Friction Points 

Attempting to retrofit security tools into established CI/CD workflows introduces significant 

integration challenges and organizational friction [3]. Security tools designed as independent 

systems rather than pipeline components create workflow disruptions when implementing 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

16 
 

    

automated verification steps. Incompatible data formats between development tools and security 

systems hamper effective information exchange, limiting automated remediation capabilities [4]. 

These integration limitations perpetuate organizational divisions between development and 

security teams, reinforcing siloed approaches rather than shared security responsibility models that 

characterize effective DevSecOps implementations. 

Table 2: Core Components of the DevSecOps Framework [3,4] 

Component 
Primary 

Function 
Key Activities Security Benefits 

Implementation 

Indicators 

Integration 

Automation 

Code 

consolidation 

and 

verification 

Repository commits, 

automated builds, 

and unit testing 

Early defect 

detection, 

consistent code 

validation 

Commit 

frequency, build 

success rate 

Deployment 

Pipeline 

Environment 

promotion 

and 

validation 

Infrastructure 

provisioning, 

configuration 

management, and 

staged releases 

Consistent 

environment 

security, 

configuration 

verification 

Deployment 

frequency, 

environment 

parity 

Security 

Orchestration 

Embedded 

protection 

throughout 

the lifecycle 

Threat modeling, 

automated scanning, 

vulnerability 

management 

Shift-left 

vulnerability 

detection, reduced 

remediation costs 

Security test 

coverage, MTTR 

metrics 

Cross-

Functional 

Collaboration 

Unified 

responsibility 

model 

Shared objectives, 

transparent 

communication, and 

joint accountability 

Collective security 

ownership, reduced 

knowledge silos 

Team integration 

metrics, 

knowledge 

transfer indicators 

 

3. DevSecOps Methodology for CI/CD  

DevSecOps represents a fundamental transformation in security implementation methodology, 

integrating protective measures throughout the software delivery lifecycle rather than applying 

them as final validation steps [4]. This approach aligns security objectives with development 

velocity requirements, enabling organizations to maintain deployment frequency while improving 

defensive capabilities. By embedding security practices within existing CI/CD workflows, 

technical teams establish continuous protection mechanisms that evolve alongside application 

functionality. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

17 
 

    

3.1. Principles of DevSecOps Integration  

Establishing ongoing security verification throughout the CI/CD pipeline ensures consistent 

protection across all deployment phases [5]. Rather than conducting periodic security assessments, 

effective DevSecOps implementations perform continuous validation during code commits, build 

processes, and deployment activities. This constant verification creates comprehensive visibility 

into security posture and prevents vulnerability windows that might otherwise remain undetected 

between scheduled assessments. Mechanizing security validation and enforcement mechanisms 

enables consistent implementation without creating deployment friction [5]. Automated security 

controls operate at pipeline speed, providing thorough protection without introducing manual 

intervention requirements that would impede delivery velocity.  

3.2. Security Governance Models  

Centralized vs. Decentralized Ownership 

Organizations implement varying governance structures based on their specific regulatory 

requirements and operational models [5]. Centralized governance establishes security teams as 

primary owners of protection mechanisms, creating consistent implementation but potentially 

introducing deployment bottlenecks. Decentralized models distribute security responsibility across 

development teams, increasing ownership but potentially creating inconsistent implementation 

patterns. Effective implementations typically blend these approaches, establishing centralized 

policy definition with distributed implementation responsibility. 

Security Champions Program 

Embedding security expertise within development teams through designated champions creates 

effective knowledge distribution without requiring extensive specialization from all team members 

[5]. These champions receive additional security training and serve as primary liaisons between 

development and security organizations. This model creates scalable security knowledge transfer 

while maintaining specialized expertise where appropriate. Champions facilitate bidirectional 

communication, ensuring security requirements remain pragmatic while development practices 

incorporate appropriate protective measures. 

Cross-Functional Responsibility 

Establishing shared accountability for security outcomes across technical disciplines eliminates 

traditional silos that impede effective protection [5]. Development, operations, and security teams 

maintain collective responsibility for system protection, preventing the organizational divisions 

that typically characterize traditional security models. This shared ownership creates alignment 

between security requirements and implementation capabilities, resulting in more effective 

protection mechanisms. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

18 
 

    

3.3. Security Metrics and Visibility 

Key Performance Indicators 

Implementing quantifiable security measurements provides an objective evaluation of protection 

effectiveness throughout the CI/CD lifecycle [5]. Critical metrics include vulnerability detection 

rates, remediation timeframes, and security debt accumulation patterns. These indicators enable 

objective assessment of security program effectiveness while identifying specific improvement 

opportunities. Effective DevSecOps implementations establish baseline measurements and track 

improvement trends rather than focusing exclusively on absolute values. 

Security Posture Visualization 

Creating comprehensive visibility into security status across pipeline components enables 

informed risk management decisions [5]. Dashboards and reporting mechanisms consolidate 

security findings from multiple validation sources, presenting unified views of protection status. 

These visualization capabilities provide both technical and executive stakeholders with appropriate 

security insights, facilitating informed risk acceptance decisions when necessary. 

4. Pre-Commit Security Implementation  

Effective security implementation begins before code reaches shared repositories, establishing 

protective guardrails during initial development activities [6]. Pre-commit security validation 

creates immediate developer feedback loops that identify potential vulnerabilities during code 

creation rather than later pipeline stages. This approach significantly reduces remediation costs 

while preventing security issues from propagating through subsequent deployment phases [7]. By 

integrating security tools directly into developer workflows, organizations establish consistent 

protection without introducing friction that might incentivize security bypass. 

4.1. Static Code Analysis Integration  

Static application security testing tools perform comprehensive vulnerability detection across 

multiple language environments without execution requirements [6]. Language-specific analyzers 

implement targeted detection patterns that identify framework-specific vulnerabilities alongside 

general security weaknesses. Organizations supplement standard rule libraries with custom 

detection patterns addressing unique architectural requirements and internal security standards [7]. 

Effective implementations incorporate false positive management workflows that prevent alert 

fatigue while maintaining detection sensitivity for legitimate vulnerabilities, creating sustainable 

scanning processes that developers trust rather than circumvent. 

4.2. Secret Detection and Management  

Automated scanning mechanisms identify embedded credentials, encryption keys, and access 

tokens within source code before repository submission [6]. These specialized detection tools 

prevent sensitive information from entering version control systems, which might persist 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

19 
 

    

indefinitely despite subsequent remediation attempts. Secure credential management systems 

provide runtime secret injection capabilities that eliminate hardcoded credential requirements 

while maintaining appropriate access controls [7]. Comprehensive secret management includes 

defined rotation policies that periodically replace credentials, minimizing potential exposure 

windows while establishing revocation capabilities for compromised access tokens. 

4.3. Dependency Vulnerability Scanning  

Software composition analysis tools evaluate third-party dependencies for known vulnerabilities 

before integration into application codebases [6]. These scanning mechanisms validate both direct 

and transitive dependencies, identifying security weaknesses that might exist in downstream 

components not explicitly specified by developers. Comprehensive scanning includes license 

compliance validation alongside security assessment, preventing potential intellectual property 

risks [7]. Effective implementations establish vulnerability prioritization frameworks that 

differentiate between theoretical findings and exploitable weaknesses, directing remediation 

resources toward dependencies that present material risk rather than addressing all identified 

vulnerabilities regardless of exploitation potential. 

Table 3: Essential CI/CD Security Practices [6,7] 

Practice What It Does Key Benefits 

Software Bill of 

Materials (SBOM) 

Lists all components in 

your software 

Shows what's in your code, finds 

vulnerabilities quickly, and helps respond to 

new threats 

Supply Chain Security 

(SLSA) 

Protects code from 

tampering 

Verifies code sources, documents the build 

process, ensures deployment integrity 

Pipeline Protection Secures the build 

environment 

Controls access to systems, protects 

credentials, and isolates environments 

Artifact Validation Verifies what gets 

deployed 

Scans images for issues, checks signatures, 

and prevents unauthorized changes 

 

5. Build-Time Security Controls  

Build-time security controls establish critical protection mechanisms during artifact creation 

phases, ensuring that resulting deployment packages maintain appropriate security properties [8]. 

These controls validate both application code and supporting infrastructure configurations before 

deployment approval. By implementing comprehensive security validation during build processes, 

organizations prevent vulnerable artifacts from reaching production environments while 

maintaining appropriate deployment velocity. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

20 
 

    

5.1. Container Image Security  

Base image vulnerability management establishes secure foundations for containerized 

applications by maintaining regularly updated and properly secured parent images [8]. This 

approach prevents inheriting known vulnerabilities through outdated or improperly configured 

base layers. Image signing and verification mechanisms establish cryptographic validation 

capabilities that ensure only authorized images are deployed into protected environments. These 

capabilities prevent unauthorized image substitution while providing verifiable artifact 

provenance. Minimal configuration principles remove unnecessary components from container 

images, reducing potential attack surface through the elimination of unused packages, tools, and 

services that might contain exploitable vulnerabilities. 

5.2. Infrastructure as Code Security  

Template scanning methodologies validate infrastructure definitions before deployment, 

identifying misconfigurations and security weaknesses in declarative environment specifications 

[8]. These automated validation mechanisms ensure cloud resources are deployed with appropriate 

security controls regardless of the environment. Security drift detection mechanisms identify 

unauthorized infrastructure modifications that might compromise established security controls or 

introduce new vulnerabilities through manual configuration changes. Compliance validation 

automation verifies infrastructure templates against organizational security standards and 

regulatory requirements, ensuring consistent policy application across all deployment 

environments without manual review requirements. 

5.3. Artifact Integrity Verification  

Artifact signing mechanisms establish cryptographic validation capabilities that verify deployment 

package authenticity and integrity throughout the delivery pipeline [8]. These digital signatures 

prevent unauthorized modifications while providing non-repudiation capabilities for audit 

purposes. Chain of custody validation establishes verifiable artifact provenance by documenting 

all systems and processes that interact with deployment packages from creation through production 

deployment. Tamper detection techniques identify unauthorized modifications to deployment 

artifacts through cryptographic validation and metadata verification, preventing supply chain 

attacks that might otherwise compromise application integrity despite proper source code security 

controls. 

6. Runtime Security Framework  

Runtime security frameworks establish continuous protection mechanisms that extend security 

controls beyond deployment into operational environments [9]. These frameworks implement 

defense-in-depth strategies that protect applications throughout their operational lifecycle, 

addressing threats that might bypass pre-deployment security controls. Zero-trust implementation 

establishes stringent identity verification requirements for all system interactions regardless of 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

21 
 

    

network location or previous authentication state. This approach requires continuous trust 

evaluation through ongoing validation of access requests against current authorization policies and 

behavioral baselines. Least privilege enforcement restricts operational permissions to the 

minimum required capabilities, preventing privilege escalation through compromised credentials 

or vulnerable components. Dynamic access control systems implement just-in-time provisioning 

that grants temporary permissions based on validated operational requirements rather than 

persistent access rights. These systems incorporate context-aware authorization that evaluates 

environmental factors alongside identity verification, adapting permission grants based on access 

patterns, location, and system state. Ephemeral credential management generates temporary access 

tokens with limited lifespans and automatically revokes unused permissions to minimize exposure 

windows. Runtime threat detection capabilities identify behavioral anomalies through continuous 

monitoring of system activity against established baselines, enabling rapid identification of 

potential compromise indicators. These detection systems incorporate attack pattern recognition 

capabilities that identify known exploitation techniques across distributed system components. 

Security event correlation mechanisms aggregate information from multiple monitoring systems 

to identify complex attack patterns that might otherwise remain undetected when analyzing 

individual system components in isolation [9]. 

7. Policy-as-Code Solutions  

Policy-as-code solutions transform security requirements from static documentation into 

executable validation mechanisms that integrate directly with CI/CD pipelines [10]. These 

solutions implement declarative security frameworks that define protection requirements in 

machine-readable formats, enabling automated enforcement throughout development and 

deployment processes. Policy definition employs version control methodologies identical to 

application code management, creating auditable records of security requirement evolution while 

enabling rollback capabilities when necessary. Comprehensive implementation includes testing 

strategies that validate policy effectiveness before enforcement, preventing unexpected 

deployment blockages from improperly configured rules. Compliance automation mechanisms 

map regulatory requirements to specific technical controls, creating traceability between 

compliance frameworks and implemented protections. These mappings enable continuous 

compliance monitoring that validates security posture against regulatory requirements throughout 

the development lifecycle rather than through periodic assessment. Automated evidence collection 

captures validation results during normal pipeline operations, generating comprehensive audit 

trails without manual documentation requirements. By transforming security policies into 

executable code, organizations establish consistent enforcement mechanisms that scale effectively 

across complex environments while adapting to evolving threat landscapes. The integration of 

policy-as-code solutions with existing CI/CD toolchains creates seamless security validation 

within established workflows, preventing the friction traditionally associated with security 

controls that operate as independent verification mechanisms outside development processes [10]. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

22 
 

    

Table 4: DevOps and DevSecOps Implementation Comparison [10] 

Characteristic Traditional DevOps Approach Integrated DevSecOps 

Framework 

Security Timing 

Security validation occurs 

primarily after development 

completion 

Protection mechanisms integrate 

throughout the entire development 

lifecycle 

Responsibility 

Model 

Security verification conducted by 

specialized teams outside the 

development workflow 

The collective ownership model 

distributes security accountability 

across all technical disciplines 

Implementation 

Focus 

Prioritizes deployment velocity 

and operational stability with 

security as a secondary 

consideration 

Establishes a balanced approach, 

maintaining both deployment 

efficiency and comprehensive 

protection 

Toolchain 

Integration 

Security tools operate as 

independent systems with limited 

pipeline integration 

Protection mechanisms function as 

native pipeline components with 

seamless workflow integration 

Risk Management 

Reactive identification of 

vulnerabilities after deployment 

completion 

Proactive detection and remediation 

during initial development phases 

 

Conclusion  

The DevSecOps framework establishes fundamental principles for securing CI/CD pipelines 

through integrated controls that balance security requirements with development velocity. Key 

success factors include executive sponsorship, cultural alignment between development and 

security teams, and investment in automation technologies that minimize manual intervention. 

Security champions programs prove particularly effective when supplemented with appropriate 

authority and recognition structures. Organizations implementing these practices demonstrate 

measurable improvements in vulnerability remediation timeframes, compliance verification 

accuracy, and deployment frequency. Future directions for pipeline security will emphasize 

adaptive defense mechanisms capable of responding to emerging threat patterns, increased reliance 

on behavioral analytics for anomaly detection, and deeper integration with cloud-native security 

controls. Organizations can implement this structured methodology by adapting it to their specific 

technology environments and risk assessments. Achieving optimal equilibrium between security 

measures and development velocity constitutes a fundamental requirement, as overly restrictive 

controls may hinder innovation while inadequate protective measures expose essential assets to 

potential threats. Strategic implementation of these recommended practices enables organizations 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 7, Issue No. 18, pp. 12 - 23, 2025                                                      www.carijournals.org 

23 
 

    

to establish the necessary security-velocity balance essential for maintaining sustainable and 

secure software delivery operations. 

 

References 

[1] Navdeep Singh Gill, "DevSecOps Pipeline, Tools and Governance," Xenonstack.com, 04 Apr. 

2025. 

https://www.xenonstack.com/blog/devsecops#:~:text=DevSecOps%20integrates%20security%2

0directly%20into,easier%20and%20cheaper%20to%20fix. 

[2]"How to Implement DevSecOps to Secure Your CI/CD Pipeline?," Mindbowser,2025. 

https://www.mindbowser.com/implement-devsecops-to-secure-ci-

cd/#:~:text=%F0%9F%94%B9%20CI/CD%20Pipeline%20Security,(CI/CD)%20pipeline. 

[3] DuploCloud, "Top 7 DevSecOps Tools to Strengthen Security in Your CI/CD Pipeline," 23 

Apr. 2025. https://duplocloud.com/blog/devsecops-tools-for-cicd/ 

[4]Microsoft Security, "What is DevSecOps?" Microsoft, 2025.https://www.microsoft.com/en-

us/security/business/security-101/what-is-

devsecops#:~:text=DevSecOps%2C%20which%20stands%20for%20development,releasing%20

code%20with%20security%20vulnerabilities. 

[5] Matt Heusser, "CI/CD pipeline security: Know the risks and best practices," Tech Target, 18 

Oct. 2024. https://www.techtarget.com/searchitoperations/tip/9-ways-to-infuse-security-in-your-

CI-CD-pipeline 

[6]Wiz Experts Team, "What is a DevSecOps Pipeline?"  10 May 2025. 

https://www.wiz.io/academy/devsecops-pipeline-best-practices 

[7] OX Security, "CI/CD Pipeline Security Best Practices to Protect the Software Supply Chain,"  

05 May 2025. https://www.ox.security/ci-cd-pipeline-security-headline/ 

[8] Browserstack.com, "DevOps vs DevSecOps: Differences and Similarities," 17 Jan. 2025. 

https://www.browserstack.com/guide/what-is-the-difference-between-devops-and-

devsecops#:~:text=DevOps%20and%20DevSecOps%20are%20modern,to%20be%20a%20conti

nuous%20focus 

[9]Getoppos.com, "What are the key components of DevSecOps? 

https://getoppos.com/components-of-

devsecops/#:~:text=In%20summary%2C%20the%20key%20components,protect%20their%20ap

plications%20and%20systems. 

[10]Paloaltonetworks.com, "What Is CI/CD Security?" 2025. 

https://www.paloaltonetworks.com/cyberpedia/what-is-ci-cd-security 

 

©2025 by the Authors. This Article is an open access article distributed 

under the terms and conditions of the Creative Commons Attribution (CC 

BY) license (https://creativecommons.org/licenses/by/4.0/)  

https://www.xenonstack.com/blog/devsecops#:~:text=DevSecOps%20integrates%20security%20directly%20into,easier%20and%20cheaper%20to%20fix
https://www.xenonstack.com/blog/devsecops#:~:text=DevSecOps%20integrates%20security%20directly%20into,easier%20and%20cheaper%20to%20fix
https://www.mindbowser.com/implement-devsecops-to-secure-ci-cd/#:~:text=%F0%9F%94%B9%20CI/CD%20Pipeline%20Security,(CI/CD)%20pipeline
https://www.mindbowser.com/implement-devsecops-to-secure-ci-cd/#:~:text=%F0%9F%94%B9%20CI/CD%20Pipeline%20Security,(CI/CD)%20pipeline
https://duplocloud.com/blog/devsecops-tools-for-cicd/
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops#:~:text=DevSecOps%2C%20which%20stands%20for%20development,releasing%20code%20with%20security%20vulnerabilities
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops#:~:text=DevSecOps%2C%20which%20stands%20for%20development,releasing%20code%20with%20security%20vulnerabilities
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops#:~:text=DevSecOps%2C%20which%20stands%20for%20development,releasing%20code%20with%20security%20vulnerabilities
https://www.microsoft.com/en-us/security/business/security-101/what-is-devsecops#:~:text=DevSecOps%2C%20which%20stands%20for%20development,releasing%20code%20with%20security%20vulnerabilities
https://www.techtarget.com/searchitoperations/tip/9-ways-to-infuse-security-in-your-CI-CD-pipeline
https://www.techtarget.com/searchitoperations/tip/9-ways-to-infuse-security-in-your-CI-CD-pipeline
https://www.wiz.io/academy/devsecops-pipeline-best-practices
https://www.ox.security/ci-cd-pipeline-security-headline/
https://www.browserstack.com/guide/what-is-the-difference-between-devops-and-devsecops#:~:text=DevOps%20and%20DevSecOps%20are%20modern,to%20be%20a%20continuous%20focus
https://www.browserstack.com/guide/what-is-the-difference-between-devops-and-devsecops#:~:text=DevOps%20and%20DevSecOps%20are%20modern,to%20be%20a%20continuous%20focus
https://www.browserstack.com/guide/what-is-the-difference-between-devops-and-devsecops#:~:text=DevOps%20and%20DevSecOps%20are%20modern,to%20be%20a%20continuous%20focus
https://getoppos.com/components-of-devsecops/#:~:text=In%20summary%2C%20the%20key%20components,protect%20their%20applications%20and%20systems
https://getoppos.com/components-of-devsecops/#:~:text=In%20summary%2C%20the%20key%20components,protect%20their%20applications%20and%20systems
https://getoppos.com/components-of-devsecops/#:~:text=In%20summary%2C%20the%20key%20components,protect%20their%20applications%20and%20systems
https://www.paloaltonetworks.com/cyberpedia/what-is-ci-cd-security
https://creativecommons.org/licenses/by/4.0/

