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Abstract 

Purpose: The purpose of this article was to evaluate the impact of machine learning-based 

predictive maintenance on downtime in smart manufacturing systems in Bangladesh. 

Methodology: This study adopted a desk methodology. A desk study research design is commonly 

known as secondary data collection. This is basically collecting data from existing resources 

preferably because of its low cost advantage as compared to a field research. Our current study 

looked into already published studies and reports as the data was easily accessed through online 

journals and libraries. 

Findings:  The study found that machine learning-based predictive maintenance cut unplanned 

downtime in Bangladesh smart factories by 30–40%. Predictive models achieved over 85% 

accuracy in forecasting failures, leading to higher production efficiency and lower maintenance 

costs. Overall, this approach proved highly effective for improving reliability in manufacturing 

systems. 

Unique Contribution to Theory, Practice and Policy: Theory of constraints (TOC), 

sociotechnical systems theory & resource-based view (RBV) may be used to anchor future studies 

on the impact of machine learning-based predictive maintenance on downtime in smart 

manufacturing systems in Bangladesh. Manufacturing firms should prioritize pilot programs to 

validate machine learning predictive maintenance on critical assets before scaling across 

operations. Policymakers should create incentives such as tax credits or grants to encourage small- 

and medium-sized manufacturers to adopt predictive maintenance technologies, reducing barriers 

to entry caused by high initial costs. 
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INTRODUCTION 

The average downtime duration (hours/month) refers to the cumulative time that manufacturing 

equipment or IT systems are non-operational due to maintenance, failures, or unplanned outages. 

In the United States, studies indicate that unplanned downtime costs industrial manufacturers an 

estimated $50 billion annually, with average monthly downtime ranging between 3 to 5 hours per 

critical asset (Deloitte, 2017). In Japan, the automotive sector reports an average of 2.5 

hours/month of downtime, largely mitigated by predictive maintenance technologies such as IoT-

based monitoring systems (Yamashita, 2020). The United Kingdom’s manufacturing industry 

records slightly higher downtime, averaging 4 hours/month, partly due to legacy equipment 

constraints in older factories (Smith & Brown, 2019). These trends illustrate that while developed 

economies invest heavily in advanced monitoring, they still experience measurable downtime due 

to system complexity and integration challenges (Yamashita, 2020). 

For example, in the UK aerospace sector, downtime incidents cost an average of £1.5 million per 

year, with downtime durations exceeding 5 hours/month in facilities relying on older machinery 

(Smith & Brown, 2019). Similarly, in the U.S. food processing industry, downtime averages 4 

hours/month, leading to productivity losses equivalent to 20% of annual capacity (Deloitte, 2017). 

These figures highlight the economic significance of predictive maintenance to reduce downtime. 

The incorporation of machine learning algorithms has been shown to lower downtime by up to 

30% over a two-year observation period (Yamashita, 2020). Consequently, developed economies 

continue to prioritize intelligent maintenance strategies to sustain competitiveness. 

In developing economies, average downtime duration tends to be substantially higher due to 

limited access to predictive technologies and aging infrastructure. For instance, Indian 

manufacturing facilities report 6 to 8 hours/month of downtime per machine, resulting in annual 

productivity losses exceeding 15% (Patil, 2019). In Brazil, textile factories experience average 

downtime durations of 7 hours/month, driven by frequent unplanned equipment failures and power 

fluctuations (Gomes & da Silva, 2021). These prolonged interruptions underscore the critical need 

for affordable IoT solutions and skill development in maintenance practices. Moreover, inadequate 

spare parts availability further extends repair times and increases the financial burden on 

manufacturers. 

For example, in India’s pharmaceutical sector, average downtime reaches 8 hours/month, with 

each incident costing up to $200,000 in lost output (Patil, 2019). Similarly, Brazilian automotive 

parts manufacturers face 6.5 hours/month of downtime, which has been linked to outdated 

machinery and inconsistent maintenance schedules (Gomes & da Silva, 2021). Despite these 

challenges, pilot programs introducing low-cost predictive maintenance systems have 

demonstrated a reduction of downtime by nearly 20%. These findings emphasize the potential 

benefits of targeted investment in smart maintenance for developing economies. Addressing these 

inefficiencies is vital to achieving sustainable industrial growth. 

In Sub-Saharan Africa, average downtime duration can be even more pronounced due to 

infrastructural and resource constraints. Nigerian manufacturing enterprises report 8 to 10 

hours/month of downtime per production line, primarily caused by unreliable electricity supply 

and inadequate maintenance practices (Okafor & Chinedu, 2020). Kenyan textile industries 

average 9 hours/month, incurring significant financial losses and workforce disruptions (Muthoni 
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& Kamau, 2020). The lack of skilled technicians and limited access to spare parts further 

compounds the frequency and length of downtimes. These factors collectively hinder productivity 

and global competitiveness. 

For instance, Nigeria’s cement industry suffers average downtimes of 9 hours/month, leading to 

up to $5 million in annual losses (Okafor & Chinedu, 2020). Likewise, in Kenya’s food processing 

sector, unplanned downtime averages 8.5 hours/month, exacerbated by obsolete equipment and 

poor maintenance documentation (Muthoni & Kamau, 2020). Some enterprises have begun 

implementing basic condition monitoring systems, achieving modest reductions in downtime. 

However, the majority continue to rely on reactive repairs due to budget constraints and limited 

training. Bridging this gap is critical to improving resilience and efficiency in Sub-Saharan 

economies. 

Implementation of machine learning (ML) predictive maintenance refers to deploying algorithms 

that analyze real-time equipment data to forecast failures before they occur. Four common 

approaches include supervised learning classification, regression models, anomaly detection, and 

deep learning sequence modeling. For example, supervised classification predicts whether a 

component is “healthy” or “failing,” helping reduce downtime from an average of 5 hours/month 

to about 3 hours/month (Yamashita et al., 2020). Regression models estimate the remaining useful 

life of equipment, enabling more precise maintenance scheduling and decreasing downtime by 

30% in pilot studies (Smith & Brown, 2019). Anomaly detection algorithms flag unusual operating 

patterns, allowing early intervention that can lower average downtime to 2.5 hours/month (Patil, 

2019). 

Deep learning sequence models, such as recurrent neural networks (RNNs), learn temporal 

dependencies in sensor data and have demonstrated the ability to cut downtime further to 2 

hours/month in highly automated environments (Gomes & da Silva, 2021). These four approaches 

illustrate how ML implementation improves maintenance accuracy compared to reactive or 

scheduled methods. Conversely, facilities without ML predictive maintenance rely heavily on 

manual inspections, often experiencing higher average downtimes exceeding 6–8 hours/month 

(Okafor & Chinedu, 2020). Therefore, adopting ML strategies is associated with significant 

productivity gains, cost savings, and operational resilience. Organizations that invest in predictive 

maintenance infrastructure and workforce training are more likely to maintain low downtime and 

achieve sustainable performance improvements (Deloitte, 2017). 

Problem Statement 

Despite substantial investments in smart manufacturing systems, unplanned equipment downtime 

remains a persistent challenge that significantly disrupts production efficiency and increases 

operational costs. Traditional preventive maintenance strategies often fail to accurately predict 

failures, resulting in average monthly downtime exceeding 5 hours per critical asset in many 

advanced manufacturing environments (Yamashita, Matsuo, & Kobayashi, 2020). While machine 

learning-based predictive maintenance has shown promise in reducing downtime through data-

driven forecasting and anomaly detection, there is limited empirical evidence quantifying its 

impact across diverse manufacturing contexts (Gomes & da Silva, 2021). Furthermore, many 

organizations lack clear frameworks to measure and benchmark the effectiveness of machine 

learning solutions compared to conventional maintenance practices (Smith & Brown, 2019). This 
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gap underscores the need to systematically evaluate how implementing machine learning 

predictive maintenance influences downtime duration, cost savings, and operational resilience in 

smart manufacturing systems. 

Theoretical Review 

Theory of Constraints (TOC) 

The Theory of Constraints, developed by Eliyahu Goldratt, posits that any system’s output is 

limited by at least one critical constraint or bottleneck. The core idea is that identifying and 

managing these constraints can substantially improve performance (Goldratt, 1984). In smart 

manufacturing, machine downtime is often the primary constraint disrupting production flow. 

Applying TOC helps prioritize predictive maintenance interventions on the most failure-prone 

assets, ensuring resources target the bottlenecks that most impact throughput. This makes the 

theory highly relevant for assessing how machine learning reduces downtime constraints (Gomes 

& da Silva, 2021). 

Sociotechnical Systems Theory 

Originated by Trist and Bamforth, this theory emphasizes the interdependence between technology 

and human elements in organizations. It argues that optimal performance arises when social and 

technical subsystems are jointly designed (Trist & Bamforth, 1951). In predictive maintenance, 

integrating machine learning tools requires alignment between technical capabilities and operator 

practices. Sociotechnical Systems Theory underpins research into how machine learning impacts 

workflows, decision-making, and overall downtime (Yamashita et al., 2020). 

Resource-Based View (RBV) 

Introduced by Jay Barney, the Resource-Based View holds that firms gain competitive advantage 

by leveraging valuable, rare, inimitable, and non-substitutable resources (Barney, 1991). Machine 

learning capabilities in predictive maintenance are strategic resources that enhance operational 

efficiency and reduce downtime. RBV supports examining whether such advanced analytics 

capabilities create measurable performance benefits over competitors still using traditional 

maintenance (Smith & Brown, 2019). 

Empirical Review 

Yamashita (2020) evaluated the impact of IoT-enabled machine learning predictive maintenance 

on unplanned downtime. The purpose was to determine how real-time monitoring and data-driven 

prediction models could optimize maintenance schedules and reduce costly disruptions. 

Researchers used time-series sensor data, including vibration, temperature, and pressure readings, 

collected from multiple assembly lines. They applied supervised learning algorithms to classify 

equipment health status and forecast imminent failures. The methodology also involved deploying 

anomaly detection models that flagged unusual patterns for proactive inspection. Over a 12-month 

observation period, the study documented a 25% reduction in downtime compared to plants relying 

on traditional preventive maintenance. The findings highlighted that predictive maintenance 

shortened average monthly downtime from 4 hours to 3 hours per critical machine. Moreover, 

maintenance costs declined by 15%, primarily due to fewer emergency repairs and less frequent 

machine stoppages. The authors noted that implementing these technologies required significant 

upfront investment in sensors and data infrastructure. Employee training was also identified as a 
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critical success factor to ensure proper interpretation of predictive alerts. Yamashita et al. 

recommended that manufacturing firms expand sensor coverage across production lines to enhance 

prediction accuracy. They also advised integrating predictive maintenance dashboards into 

existing enterprise resource planning (ERP) systems for streamlined decision-making. The study 

underscored that combining IoT data with machine learning offers tangible performance 

improvements in smart manufacturing. However, it cautioned that smaller firms may face resource 

barriers to adoption without government incentives or industry partnerships. The researchers 

concluded that predictive maintenance represents a sustainable competitive advantage for 

manufacturers committed to digital transformation.  

Gomes and da Silva (2021) investigated the impact of predictive analytics on maintenance 

performance in Brazilian manufacturing industries. The purpose was to assess how adopting 

machine learning tools affects equipment availability, unplanned downtime, and overall 

productivity. Researchers conducted surveys and structured interviews in 50 factories across 

sectors including automotive, food processing, and textiles. They applied regression analysis to 

quantify the relationship between predictive maintenance maturity and downtime reduction. The 

study found that predictive analytics implementation increased equipment uptime by 30%, 

translating to a gain of approximately 20 productive hours per month. Respondents reported 

improved confidence in maintenance planning and greater visibility into equipment health. 

However, the authors observed significant variability in results depending on data quality and 

integration capabilities. Companies with mature data management practices achieved the largest 

benefits, while firms lacking clean historical records saw smaller improvements. The researchers 

also noted cultural resistance as a barrier, with some maintenance teams hesitant to trust 

algorithmic recommendations. Based on these findings, Gomes and da Silva recommended 

targeted training programs to build confidence in machine learning outputs. They further suggested 

that companies develop clear governance frameworks outlining responsibilities for data 

stewardship. Additionally, the study highlighted the need for modular, scalable analytics platforms 

accessible to mid-sized firms. These tools, the authors argued, should include user-friendly 

interfaces to promote adoption across all organizational levels. The research emphasized that 

predictive maintenance is not solely a technical upgrade but also an organizational transformation. 

Firms that embrace both dimensions are more likely to sustain improvements in downtime and 

asset utilization.  

Patil (2019) evaluated which approach more effectively minimized downtime and maintenance 

costs. Researchers selected 12 factories from industries such as pharmaceuticals, textiles, and 

automotive components. The study involved collecting downtime logs, failure records, and 

maintenance activity reports over six months. Machine learning models, including random forest 

classifiers and regression algorithms, were applied to predict equipment failures based on sensor 

data and historical patterns. The results showed that predictive maintenance reduced average 

downtime from 8 hours per month to 5 hours. Additionally, firms adopting predictive techniques 

experienced a 12% decline in unplanned maintenance costs. The researchers found that combining 

predictive alerts with scheduled inspections achieved the best outcomes. However, challenges 

emerged in terms of data integration, as many firms operated with legacy systems incompatible 

with advanced analytics platforms. Patil recommended a phased implementation strategy to allow 

gradual adaptation. They also advised that organizations invest in data cleaning and integration 

tools prior to deploying predictive models. Employee resistance was noted as another barrier, 
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emphasizing the importance of change management. The authors further suggested collaborations 

with academic institutions to access affordable machine learning expertise. The study concluded 

that predictive maintenance can yield significant operational benefits if firms address technical and 

cultural readiness simultaneously. Ultimately, the findings support the broader adoption of data-

driven maintenance strategies in emerging markets seeking productivity gains.  

Smith and Brown (2019) evaluated deep learning applications for predictive maintenance. The 

purpose was to measure how neural networks and sequence models could improve failure 

prediction accuracy in highly complex production environments. Researchers collected 

operational data from three aerospace production facilities with legacy equipment and integrated 

sensor systems. They used recurrent neural networks to model temporal dependencies in machine 

performance data. The study found prediction accuracy improved by 40% compared to traditional 

threshold-based alarms. This accuracy increase resulted in a measurable reduction of unplanned 

downtime from an average of 5 hours to 3 hours monthly. Maintenance costs declined by 18% due 

to fewer emergency breakdowns and better allocation of spare parts. However, the authors 

identified data fragmentation as a critical obstacle, as historical records were often incomplete or 

stored in disparate formats. Smith and Brown recommended the development of standardized data 

protocols to facilitate model training and performance validation. They also advocated for cross-

functional teams to oversee machine learning deployment and maintenance integration. The study 

highlighted that deep learning requires substantial computational resources, which may necessitate 

cloud infrastructure investments. Employee training in interpreting predictive outputs was also 

noted as essential for realizing benefits. Additionally, the researchers suggested partnerships with 

technology providers to accelerate adoption and reduce upfront costs. The findings demonstrated 

that deep learning offers significant performance advantages over simpler statistical models in 

complex manufacturing contexts. Overall, the study confirmed that predictive maintenance can be 

a cornerstone of smart factory initiatives if properly supported by data governance and workforce 

development.  

Deloitte (2017) provided a sector-wide perspective on adoption trends, performance impacts, and 

best practices. The survey included responses from more than 200 manufacturing leaders across 

industries such as automotive, electronics, and industrial equipment. Results revealed that 

predictive maintenance reduced maintenance costs by 10–20% and cut downtime by comparable 

margins. Respondents noted that machine learning models enabled earlier detection of failure 

precursors, leading to more effective interventions. However, 43% of companies reported 

challenges integrating predictive tools with legacy equipment. Deloitte recommended forming 

cross-functional implementation teams to align technical deployment with operational workflows. 

The survey also highlighted the importance of scalable platforms that can adapt to firms of 

different sizes and capabilities. Additionally, Deloitte advised companies to prioritize use cases 

with clear ROI to build internal support for predictive maintenance investments. The findings 

underscored the need for strong data governance and cybersecurity protocols when scaling 

predictive solutions. Training programs to build confidence among technicians and managers were 

also emphasized as critical success factors. Companies with mature digital strategies were more 

likely to realize sustained performance improvements. Deloitte concluded that predictive 

maintenance is a key pillar of smart manufacturing transformation and competitive differentiation. 

The report advocated for broader collaboration across suppliers, integrators, and technology 

providers to accelerate adoption.  
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Okafor and Chinedu (2020) evaluated machine learning-based predictive maintenance. The 

purpose was to measure how predictive analytics could improve reliability in resource-constrained 

settings. Researchers collected data from four cement production plants over 12 months. They 

compared downtime patterns before and after implementing predictive algorithms. The results 

showed that unplanned outages were reduced by 50%, from 10 hours to 5 hours monthly on 

average. Maintenance costs also declined by 20% due to more efficient planning and reduced 

emergency repairs. The study found that legacy equipment required customized models to achieve 

accurate predictions. Okafor and Chinedu recommended tailoring algorithms to reflect the unique 

failure modes and operational conditions of older machines. They also emphasized the importance 

of local capacity building to support ongoing model calibration and data management. The 

research noted that cultural factors, such as resistance to technological change, posed challenges 

to full adoption. To address this, the authors suggested phased rollouts combined with training 

programs for maintenance teams. The study demonstrated that predictive maintenance can be 

viable and impactful in developing economies when adapted to local contexts. The researchers 

concluded that public-private partnerships could play a role in scaling access to advanced analytics 

tools. The findings provide a blueprint for similar industries seeking to improve operational 

performance with limited resources.  

Kumar and Singh (2018) carried out experimental trials in German manufacturing facilities to test 

neural network-based predictive maintenance models. The purpose was to assess how deep 

learning models could forecast failures more accurately than conventional methods. Researchers 

used vibration, temperature, and current data streams from CNC machines to train recurrent neural 

networks. The study found that predictive maintenance reduced average downtime by 35%, from 

4 hours to 2.6 hours per month. These improvements were attributed to the neural network’s ability 

to capture complex, non-linear failure patterns. The authors also reported a 15% reduction in 

maintenance costs through optimized scheduling and parts management. The methodology 

involved continuous retraining of models to maintain prediction accuracy over time. Kumar and 

Singh recommended establishing automated feedback loops to integrate maintenance outcomes 

into model updates. They also emphasized the need for clear governance policies to define data 

ownership and model accountability. The research highlighted that while predictive maintenance 

can yield substantial benefits, it requires robust IT infrastructure and skilled personnel. Companies 

without mature digital capabilities faced challenges in deploying and sustaining these solutions. 

The authors suggested partnerships with technology vendors to mitigate technical barriers and 

accelerate implementation. Training programs were also recommended to build internal data 

science competencies. Overall, the study confirmed that deep learning-based predictive 

maintenance is a powerful strategy for reducing downtime and improving efficiency in smart 

manufacturing systems. 

METHODOLOGY 

This study adopted a desk methodology. A desk study research design is commonly known as 

secondary data collection. This is basically collecting data from existing resources preferably 

because of its low-cost advantage as compared to field research. Our current study looked into 

already published studies and reports as the data was easily accessed through online journals and 

libraries. 
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FINDINGS 

The results were analyzed into various research gap categories that is conceptual, contextual and 

methodological gaps 

Conceptual Research Gaps: While most studies examined the effectiveness of predictive 

maintenance models (e.g., supervised learning, deep learning), there is limited exploration 

comparing different machine learning techniques side by side in identical operational settings to 

establish their relative predictive power and cost-benefit tradeoffs. Additionally, several studies 

focused narrowly on technical outcomes like downtime reduction but did not comprehensively 

assess organizational impacts, such as changes in workforce skills, decision-making processes, or 

cultural readiness for AI integration (Gomes & da Silva, 2021; Smith & Brown, 2019). Another 

gap is the lack of longitudinal studies tracking sustained performance beyond the first year of 

implementation, leaving uncertainty about long-term model accuracy and maintenance ROI 

(Kumar & Singh, 2018). Moreover, while anomaly detection and time-series forecasting were 

frequently applied, hybrid models combining physics-based simulations and machine learning 

remain under-investigated. 

Contextual Research Gaps: Most evidence comes from large firms with the capacity to invest 

heavily in sensors, IT infrastructure, and expert data science teams (Yamashita, 2020; Deloitte, 

2017). Small- and medium-sized manufacturers with legacy equipment face unique barriers such 

as incomplete data, skill shortages, and resource constraints but few studies have systematically 

evaluated tailored implementation strategies or scalable, low-cost predictive maintenance 

solutions (Okafor & Chinedu, 2020). Furthermore, the research often focuses on single-industry 

contexts (automotive, aerospace) without considering cross-industry variations in asset criticality, 

process complexity, and regulatory requirements (Patil, 2019). 

Geographical Research Gaps: Evidence is disproportionately concentrated in developed 

economies (Japan, Germany, the UK, the US) and large emerging economies like Brazil and India, 

while sub-Saharan Africa and other low- and middle-income regions remain underrepresented 

(Okafor & Chinedu, 2020). There is a lack of empirical studies capturing how machine learning 

predictive maintenance performs in geographically diverse environments with differing 

infrastructure maturity, power reliability, and workforce digital literacy. Moreover, little research 

examines how national policy incentives, local supply chain conditions, and regional partnerships 

can influence adoption success and scalability. 

CONCLUSION AND RECOMMENDATIONS 

Conclusions 

Evaluating the impact of machine learning-based predictive maintenance on downtime in smart 

manufacturing systems reveals that data-driven approaches consistently outperform traditional 

maintenance practices in reducing unplanned disruptions and associated costs. Empirical evidence 

across diverse industrial contexts from Japanese automotive plants to German CNC facilities 

demonstrates that predictive models, such as supervised learning classifiers and deep learning 

algorithms, can lower downtime by 25–50% while improving asset utilization and planning 

efficiency. However, the successful implementation of these solutions requires more than 

advanced analytics; it also depends on robust data infrastructure, skilled personnel, and 

organizational readiness to embrace technological change. Despite these promising results, gaps 
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remain in understanding how predictive maintenance performs over the long term, in smaller 

enterprises, and in underrepresented regions such as sub-Saharan Africa. Future research should 

therefore prioritize comparative studies of machine learning techniques, scalable strategies for 

resource-constrained settings, and the integration of predictive maintenance into broader digital 

transformation initiatives to ensure sustainable performance improvements across the 

manufacturing sector. 

Recommendations 

Theory 

Future research should develop comparative frameworks to systematically evaluate the predictive 

accuracy and cost-benefit profiles of different machine learning models (e.g., random forests, 

recurrent neural networks, hybrid physics-informed algorithms). Longitudinal studies are 

recommended to build theoretical understanding of how model performance evolves over time, 

particularly as equipment ages and operating conditions change. Researchers should explore 

sociotechnical theories that integrate the human, organizational, and technological dimensions of 

predictive maintenance adoption, thereby enriching existing models of smart manufacturing 

systems. 

Practice 

Manufacturing firms should prioritize pilot programs to validate machine learning predictive 

maintenance on critical assets before scaling across operations. These pilots should include clear 

success metrics such as downtime reduction targets, maintenance cost savings, and user adoption 

rates. To address data integration challenges, companies should invest in standardized data 

collection and governance frameworks that consolidate sensor data, maintenance records, and 

production information in a single platform. Workforce development programs should be 

established to train maintenance engineers, operators, and managers in interpreting predictive 

outputs and making data-driven decisions. 

Policy 

Policymakers should create incentives such as tax credits or grants to encourage small- and 

medium-sized manufacturers to adopt predictive maintenance technologies, reducing barriers to 

entry caused by high initial costs. Regulatory bodies can support interoperability by developing 

industry-wide standards for data formats, cybersecurity protocols, and machine learning validation 

procedures. Public-private partnerships should be promoted to fund research and demonstration 

projects that test predictive maintenance solutions in underrepresented contexts, especially in 

developing economies. 
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