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Abstract 

Purpose: With the rising threat of phishing attacks exploiting user naivety, this report introduces a 

novel approach to bolster web security. Traditional rule-based systems and existing solutions fall 

short in addressing sophisticated phishing attempts. The proposed solution entails a Chromium-

based browser extension that leverages machine learning classification techniques. 

Methodology:  A Python web server, utilizing decision trees, k- nearest neighbors, and random 

forests, assesses the legitimacy of a given URL. The extension communicates with the server, 

providing real-time notifications to users when visiting potential phishing sites.  

Findings: Experimental results demonstrate the effectiveness of the ensemble model with an 

accuracy of 90.68%, marking a significant improvement over rule-based alternatives.  

Unique contribution to theory, policy and practice: Future work includes refining models, 

incorporating user feedback, and expanding the application to diverse platforms and contexts. 

Keywords: Phishing Defense, Machine Learning Classification, Web Server Architecture, 

Ensemble Model 
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1 Introduction 

With the recent advancement in various cybersecurity technologies, the weakest link in 

cybersecurity happens to be the end users. Attackers utilize phishing, which exploits the naivety of 

users to trick them into handing out sensitive information. This poses a great risk not only to the 

users themselves but the organizations and institutions of which they are a part of. According to 

recent research from Proofpoint, 75% of organizations around the world experienced a phishing 

attack in 2020, and 74% of attacks targeting US businesses were 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙.8 

Most of the software interactions between users and organizations happen through websites on 

computers/laptops. Forcing users to install a custom application to be run is a rarity due to the 

convenience a browser provides. Web-based security for browsers is crucial today, and Phishing is 

one of the crimes that still exists. 

Apart from increasing security awareness among users, the tools that complement that awareness 

to help users make safe decisions must be developed. This report proposes and demonstrates a 

Chromium-based browser extension to help mitigate the risk of phishing while browsing the web. 

The central idea of the browser extension is to notify the user whenever they open any potential 

phishing website. 

The solution also includes a Python web server, which utilizes various Machine Learning 

classification techniques to determine the legitimacy of the web-page in question. The web server 

takes in a URL and returns a boolean value indicating if the given URL is part of a potential 

phishing attempt. 

The browser extension monitors each URL that the user visits and tries to determine if the URL is 

malicious with the help of the web server. The web server exposes a REST API consumed by the 

extension for communication. The same API can also be reused to implement a similar phishing 

detection in a different context like a network-level application or a mobile application like 

Android. 

The server implements both a mixture of rule-based approach and Machine Learning classification 

techniques. The rule-based approach is useful for weeding out obvious URLs and is inexpensive. 

The Machine Learning classification techniques is more expensive to do but help predict whether 

a URL can be a phishing site. 

2 Related Work 

𝑃ℎ𝑖𝑠ℎ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟7 This Chromium extension has set out to solve the same problem as this project. 

Based on its description on the website and the analysis of its behavior, it can be concluded that 

this extension uses a rule-based system to determine if a webpage is a phishing attempt. It also 

seems to be particularly accurate when it comes to identifying illegitimate banking pages. Even 

though rule-based systems are great for detecting simple phishing attempts, they are not ideal for 

more sophisticated ones. Rule-based systems are also inherently complex to maintain - adding and 

modifying rules over time makes the system more complex and unmanageable with time. They 
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also demand more human intervention to define the rules and maintain them. Using Machine 

Learning instead of a rule-based system eliminates many of these limitations. As Machine Learning 

is data-centric, it doesn’t require managing complex rules and makes it straightforward to tweak 

the algorithms. 

𝐶𝑙𝑜𝑢𝑑𝑝ℎ𝑖𝑠ℎ3 Cloudphish is a phishing detector for web-based email software. It monitors all 

emails users receive and checks each email for a phishing attack. Having a paid subscription model, 

it offers a decent service. However, its major limitation is that it works only with the email inbox. 

Even though many phishing attacks are carried over through email, phishing is as prominent on 

social media and messaging apps in this age. And that calls for a solution that monitors all web 

activity to identify phishing attacks regardless of their delivery method. 

Various other browser extensions virtually have the same limitations as the aforementioned 

solutions2911 As their limitations are encompassed in discussing other solutions above, their 

detailed discussion has been omitted for brevity. 

To summarize, there are various browser plugins consisting of rule-based systems, simple 

whitelists-blacklists, and some even using Machine Learning and Artificial Intelligence. However 

there needs to be a solution that utilizes all available phishing detection methods to protect the 

average internet user from criminals. 

3 Approach 

The architecture of this project consists of two primary components: The browser extension and 

the web server. 

Browser Extension The extension is developed for Chromium-based browsers using JavaScript 

with HTML and CSS. Therefore, it is compatible with any Chromium implementation, including 

Google Chrome, Microsoft Edge, Brave, etc. The extension monitors each web page that the user 

visits and fetches the URL of that web page. It then communicates with the web server, which tells 

if the URL is part of a phishing attempt. The user is notified of the analysis results based on the 

server’s response. The extension will stay silent in the background while the user is visiting 

websites deemed safe. It only bothers them when there is a potential of phishing on the site, they 

are currently visiting to help them make a safer decision. 

Python Web Server The web server has a REST endpoint that takes in a URL and uses Machine 

Learning techniques to classify it. It extracts relevant “features” from the URL and feeds them to 

Classification Models to determine the legitimacy of the URL. This process is expanded upon 

further down in this section. 

Classification is a process of categorizing a given set of data into classes. There would be two 

classification labels in this case: “spam” and “not spam”. The input data would be values of various 

URL features that are deemed effective for the high-quality classification of any URL into one of 

the classes. 
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The process of creating a classification model consists of two primary stages. The first is the 

training stage, where a classifier is fed a large amount of input along with their respective class 

labels. That creates a classification model with a set of inputs without their respective labels to let 

it classify each input into a class. That constitutes the second stage, where the correctness of the 

newly created classification model is compared against the actual labels. The input set given to the 

model for the second stage is often referred to as testing dataset, and the data used for the first stage 

is called training dataset. As a common practice, the dataset on hand is split into training and testing 

datasets for creating and testing the classification models, respectively. 

The classifiers used in this project are described below: 

1. Decision Trees: Decision Trees belong to the family of supervised machine- learning 

algorithms. Decision trees classify the input by running them down the tree from the 

root node to some leaf node, whereas the leaf node provides the classification of the 

input. 

2. K-Nearest Neighbors (KNN): The KNN algorithm assumes that similar things are near 

to each other. Based on this assumption, it classifies all nearby data points into one. 

Then, it classifies the given input by locating N-nearest neighbors and finding a mode 

of their labels, which is predicted to be the label of the input set. 

3. Random Forests: Random Forests consist of many Decision Trees that operate as an 

ensemble. Each tree in a forest classifies the given input set to a label, and the label with 

the highest number of votes is considered the Random Forest prediction. 

                               

      Figure 1. Architecture overview of the application 
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The individual trees in a random forest are relatively uncorrelated, and they perform better as an 

ensemble than they would on their own. To put it in layman’s terms, the trees safeguard each other 

from their errors. 

The following section describes the datasets used for training and testing the models with the 

aforementioned classifiers. 

1. Phishing Websites Dataset:1 This dataset has 11,055 data points with 6,157 legitimate URLs and 

4,898 phishing URLs. And it contains 30 features sub- divided into three categories: 

(a) Features based on the domain and subdomains 

(b) Features derived from the other parts of the URL 

(c) Features derived from the webpage HTML and JavaScript 

2. Datasets for phishing websites detection:10  This dataset consists of 111 features, of which 97 

are based on the URL. For the phishing websites, the list was extracted from the PhishTank registry 

which are verified by multiple users. And for sets of legitimate websites, the publicly available and 

community labeled lists are utilized.5 

When the server receives the URL before any of the Machine Learning models can test it, it is 

checked against a whitelist. The whitelist is extracted from The Majestic Million dataset,6  which 

maintains a list of top 1 million domains on the internet. The whitelist helps reduce the processing 

and network overhead of checking the most popular sites that an average user visits daily. The 

experiments section further elaborates on the need for doing this. 

The machine learning models are already trained with both datasets, are precomputed, and stored 

on the server. If the given domain is not part of the whitelist, the URL is passed on to these models. 

Whenever the server receives a URL to be tested, it extracts all the features from the given URL. 

Many of the features are extracted through string parsing, and the rest of them require the use of 

external APIs and libraries. For example, PageRank of a given domain is fetched using Open 

PageRank API.4 

After extracting the relevant features for each dataset, they are passed on to the classification 

models and their ensembles. The result is sent back based on the outputs of the various models. 

One advantage of using a server-based approach is that essentially, results for different URLs from 

different users can be cached. This can save recurring computation for the same URL across users 

and decrease response times on repeated requests. 

4 Experiments and Results 

The experiments in this report are mainly concerned with the effectiveness and efficiency of 

phishing detection. Due to the nature of the problem, the focus was more on effectiveness since 

there were a lot of parameters to tune. That being said, efficiency concerns are legitimate and were 

explored as well. 



International Journal of Computing and Engineering  

ISSN 2958-7425 (online)   

Vol. 5, Issue No. 4, pp. 56 - 63, 2024                                                           www.carijournals.org 

61 
 

    

One of the important characteristics of a machine learning model is the data set used to train it. The 

nature of the data set greatly impacts the effectiveness of the result. Initially, Experiments were 

done on various data sets available across the web using simple classification methods, and the 

accuracy results were compared to filter out the ineffective collections. 

The decision to use two data sets as a part of the final application was based on the observation that 

”Phishing Websites Dataset”1 had a lot of non-url based features that worked very well based on 

the content of the website. In contrast, ”Datasets for Phishing websites detection"10  data set 

contains 97 features that depended only on the URL structure, which effectively detect phishing 

websites. Including both data sets, with the result from their combined models, effectively acts as 

a way for the result to have legitimate checks and balances as well. If both models predict that a 

website might be a phishing website, there is a high probability that it is true. Whenever there is a 

partial agreement, it is prudent to let the user know and be the final arbiter of this conflict. This 

exploration allowed the feature of ”Caution” vs ”Alert” notifications to come up organically. 

The models were built by splitting a portion of the input as training and test data. Using a Decision 

Tree classifier and cross-validated into 10 splits. It was verified manually by using it as an extension 

in regular browsing to flag obvious errors. For the model from the dataset 

"𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑓𝑜𝑟 𝑝ℎ𝑖𝑠ℎ𝑖𝑛𝑔 𝑤𝑒𝑏𝑠𝑖𝑡𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛"10 it was noticed that the model’s accuracy was 

high with the test data but performed rather poorly with random samples from the real world. This 

led to the hypothesis that the model was overfitting the data set. This led to the introduction of the 

ensembles for this model in particular. The combination of additional classifiers was tried out 

(Decision Tree, k-Nearest Neighbors and Random Forest) and verified with the same methods, 

until a minimum accuracy of 80% was achieved. 

Tuning individual classifiers is also detrimental to the overall accuracy measurement of a model. 

The classification ensemble contained a K-Nearest Neighbor classifier for the 

”Datasets for phishing websites detection”10 model. The number of neighbors for the 

classification was increased to the effect, that it over-fit the data. This was fruitful since the 

ensemble of different classifiers helped reduce the overall variance of the model. 

The above experiments were predominantly effectiveness-based approaches. Although using a 

combination of two models helped improve the overall goal of detecting phishing websites, it came 

at the cost of the delay in prediction. Steps were taken to parallelize the flow of aggregating the 

predictions from the two models. That being said, there is no denying that using a classifier to 

predict outcomes is inherently expensive. In a resource-constrained environment, it must be called 

upon only when truly necessary. Once it’s called upon, it is prudent to reuse its results to save the 

cost of classifying again. To this effect, a ”Whitelist” of frequently used websites was added to skip 

prediction entirely for overtly obvious websites. Since the intended application of this classification 

is in browser extensions, the fact that users will browse popular websites frequently is not an 

entirely unfair assumption. Caching the results on the server also goes well with this approach. This 

rule-based counterpart for the Machine Learning classifier helps improve the overall efficiency of 

the server. 
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Table 1. Performance Results of the Models 

Model Accuracy Precision Recall F1 Score 

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙10 90.68 92.69 89.20 90.92 

Decision tree Model1 80.37 84.03 80.82 82.40 

5 Conclusion and Future Work 

Phishing is one of the most widespread security attacks on the internet of this age. As the attacks 

become increasingly sophisticated, the solutions to prevent them need to keep with them. 

Traditional methods of detecting attacks must be combined with the growing fields of machine 

learning and artificial intelligence. It is apparent from various experiments and observations that 

the ideal solution to such issues is to combine the best approaches and make them work with each 

other. 

For the enhancement of this implementation, there seems to be a potential to improve the machine 

learning models and the features that are being used for classification. The extension and the server 

can be updated to also take in user feedback regarding a misclassification of any site. And the 

feedback would be considered by the classification models to improve their performance. 

Although, it might introduce a fresh set of challenges such as abuse of the feedback system to pass 

off an illegitimate site as safe (adversarial attacks). Potential solution to this problem would be to 

have a threshold on number of feedbacks until which the system does not consider them for the 

particular website. 

The solution proposed and implemented in this project can be a genesis to a series of tools and 

products that strive to solve the issue of phishing attacks on the internet. The existing rule-based 

solutions that use HTML properties of the webpage can be incorporated into the machine learning 

models for potential improvement in performance. The existing REST APIs and the Python 

interfaces can also be reused to monitor phishing in other contexts. There can be an Android 

application that monitors the URLs visited by the user and notifies them if any of them have a 

potential to be a threat. And the same use case can be applied to other platforms, operating systems 

and at different abstraction levels like network or system. 
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