
International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

55

Secure Browse: AI-Powered Phishing Defense for Browsers

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

56

Secure Browse: AI-Powered Phishing Defense for Browsers

Santosh Kumar Kande

Accepted: 25th Mar, 2024 Received in Revised Form: 25th Apr, 2024 Published: 25th May, 2024

Abstract

Purpose: With the rising threat of phishing attacks exploiting user naivety, this report introduces a

novel approach to bolster web security. Traditional rule-based systems and existing solutions fall

short in addressing sophisticated phishing attempts. The proposed solution entails a Chromium-

based browser extension that leverages machine learning classification techniques.

Methodology: A Python web server, utilizing decision trees, k- nearest neighbors, and random

forests, assesses the legitimacy of a given URL. The extension communicates with the server,

providing real-time notifications to users when visiting potential phishing sites.

Findings: Experimental results demonstrate the effectiveness of the ensemble model with an

accuracy of 90.68%, marking a significant improvement over rule-based alternatives.

Unique contribution to theory, policy and practice: Future work includes refining models,

incorporating user feedback, and expanding the application to diverse platforms and contexts.

Keywords: Phishing Defense, Machine Learning Classification, Web Server Architecture,

Ensemble Model

https://doi.org/10.47941/ijce.1921

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

57

1 Introduction

With the recent advancement in various cybersecurity technologies, the weakest link in

cybersecurity happens to be the end users. Attackers utilize phishing, which exploits the naivety of

users to trick them into handing out sensitive information. This poses a great risk not only to the

users themselves but the organizations and institutions of which they are a part of. According to

recent research from Proofpoint, 75% of organizations around the world experienced a phishing

attack in 2020, and 74% of attacks targeting US businesses were 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙.8

Most of the software interactions between users and organizations happen through websites on

computers/laptops. Forcing users to install a custom application to be run is a rarity due to the

convenience a browser provides. Web-based security for browsers is crucial today, and Phishing is

one of the crimes that still exists.

Apart from increasing security awareness among users, the tools that complement that awareness

to help users make safe decisions must be developed. This report proposes and demonstrates a

Chromium-based browser extension to help mitigate the risk of phishing while browsing the web.

The central idea of the browser extension is to notify the user whenever they open any potential

phishing website.

The solution also includes a Python web server, which utilizes various Machine Learning

classification techniques to determine the legitimacy of the web-page in question. The web server

takes in a URL and returns a boolean value indicating if the given URL is part of a potential

phishing attempt.

The browser extension monitors each URL that the user visits and tries to determine if the URL is

malicious with the help of the web server. The web server exposes a REST API consumed by the

extension for communication. The same API can also be reused to implement a similar phishing

detection in a different context like a network-level application or a mobile application like

Android.

The server implements both a mixture of rule-based approach and Machine Learning classification

techniques. The rule-based approach is useful for weeding out obvious URLs and is inexpensive.

The Machine Learning classification techniques is more expensive to do but help predict whether

a URL can be a phishing site.

2 Related Work

𝑃ℎ𝑖𝑠ℎ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟7 This Chromium extension has set out to solve the same problem as this project.

Based on its description on the website and the analysis of its behavior, it can be concluded that

this extension uses a rule-based system to determine if a webpage is a phishing attempt. It also

seems to be particularly accurate when it comes to identifying illegitimate banking pages. Even

though rule-based systems are great for detecting simple phishing attempts, they are not ideal for

more sophisticated ones. Rule-based systems are also inherently complex to maintain - adding and

modifying rules over time makes the system more complex and unmanageable with time. They

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

58

also demand more human intervention to define the rules and maintain them. Using Machine

Learning instead of a rule-based system eliminates many of these limitations. As Machine Learning

is data-centric, it doesn’t require managing complex rules and makes it straightforward to tweak

the algorithms.

𝐶𝑙𝑜𝑢𝑑𝑝ℎ𝑖𝑠ℎ3 Cloudphish is a phishing detector for web-based email software. It monitors all

emails users receive and checks each email for a phishing attack. Having a paid subscription model,

it offers a decent service. However, its major limitation is that it works only with the email inbox.

Even though many phishing attacks are carried over through email, phishing is as prominent on

social media and messaging apps in this age. And that calls for a solution that monitors all web

activity to identify phishing attacks regardless of their delivery method.

Various other browser extensions virtually have the same limitations as the aforementioned

solutions2911 As their limitations are encompassed in discussing other solutions above, their

detailed discussion has been omitted for brevity.

To summarize, there are various browser plugins consisting of rule-based systems, simple

whitelists-blacklists, and some even using Machine Learning and Artificial Intelligence. However

there needs to be a solution that utilizes all available phishing detection methods to protect the

average internet user from criminals.

3 Approach

The architecture of this project consists of two primary components: The browser extension and

the web server.

Browser Extension The extension is developed for Chromium-based browsers using JavaScript

with HTML and CSS. Therefore, it is compatible with any Chromium implementation, including

Google Chrome, Microsoft Edge, Brave, etc. The extension monitors each web page that the user

visits and fetches the URL of that web page. It then communicates with the web server, which tells

if the URL is part of a phishing attempt. The user is notified of the analysis results based on the

server’s response. The extension will stay silent in the background while the user is visiting

websites deemed safe. It only bothers them when there is a potential of phishing on the site, they

are currently visiting to help them make a safer decision.

Python Web Server The web server has a REST endpoint that takes in a URL and uses Machine

Learning techniques to classify it. It extracts relevant “features” from the URL and feeds them to

Classification Models to determine the legitimacy of the URL. This process is expanded upon

further down in this section.

Classification is a process of categorizing a given set of data into classes. There would be two

classification labels in this case: “spam” and “not spam”. The input data would be values of various

URL features that are deemed effective for the high-quality classification of any URL into one of

the classes.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

59

The process of creating a classification model consists of two primary stages. The first is the

training stage, where a classifier is fed a large amount of input along with their respective class

labels. That creates a classification model with a set of inputs without their respective labels to let

it classify each input into a class. That constitutes the second stage, where the correctness of the

newly created classification model is compared against the actual labels. The input set given to the

model for the second stage is often referred to as testing dataset, and the data used for the first stage

is called training dataset. As a common practice, the dataset on hand is split into training and testing

datasets for creating and testing the classification models, respectively.

The classifiers used in this project are described below:

1. Decision Trees: Decision Trees belong to the family of supervised machine- learning

algorithms. Decision trees classify the input by running them down the tree from the

root node to some leaf node, whereas the leaf node provides the classification of the

input.

2. K-Nearest Neighbors (KNN): The KNN algorithm assumes that similar things are near

to each other. Based on this assumption, it classifies all nearby data points into one.

Then, it classifies the given input by locating N-nearest neighbors and finding a mode

of their labels, which is predicted to be the label of the input set.

3. Random Forests: Random Forests consist of many Decision Trees that operate as an

ensemble. Each tree in a forest classifies the given input set to a label, and the label with

the highest number of votes is considered the Random Forest prediction.

 Figure 1. Architecture overview of the application

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

60

The individual trees in a random forest are relatively uncorrelated, and they perform better as an

ensemble than they would on their own. To put it in layman’s terms, the trees safeguard each other

from their errors.

The following section describes the datasets used for training and testing the models with the

aforementioned classifiers.

1. Phishing Websites Dataset:1 This dataset has 11,055 data points with 6,157 legitimate URLs and

4,898 phishing URLs. And it contains 30 features sub- divided into three categories:

(a) Features based on the domain and subdomains

(b) Features derived from the other parts of the URL

(c) Features derived from the webpage HTML and JavaScript

2. Datasets for phishing websites detection:10 This dataset consists of 111 features, of which 97

are based on the URL. For the phishing websites, the list was extracted from the PhishTank registry

which are verified by multiple users. And for sets of legitimate websites, the publicly available and

community labeled lists are utilized.5

When the server receives the URL before any of the Machine Learning models can test it, it is

checked against a whitelist. The whitelist is extracted from The Majestic Million dataset,6 which

maintains a list of top 1 million domains on the internet. The whitelist helps reduce the processing

and network overhead of checking the most popular sites that an average user visits daily. The

experiments section further elaborates on the need for doing this.

The machine learning models are already trained with both datasets, are precomputed, and stored

on the server. If the given domain is not part of the whitelist, the URL is passed on to these models.

Whenever the server receives a URL to be tested, it extracts all the features from the given URL.

Many of the features are extracted through string parsing, and the rest of them require the use of

external APIs and libraries. For example, PageRank of a given domain is fetched using Open

PageRank API.4

After extracting the relevant features for each dataset, they are passed on to the classification

models and their ensembles. The result is sent back based on the outputs of the various models.

One advantage of using a server-based approach is that essentially, results for different URLs from

different users can be cached. This can save recurring computation for the same URL across users

and decrease response times on repeated requests.

4 Experiments and Results

The experiments in this report are mainly concerned with the effectiveness and efficiency of

phishing detection. Due to the nature of the problem, the focus was more on effectiveness since

there were a lot of parameters to tune. That being said, efficiency concerns are legitimate and were

explored as well.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

61

One of the important characteristics of a machine learning model is the data set used to train it. The

nature of the data set greatly impacts the effectiveness of the result. Initially, Experiments were

done on various data sets available across the web using simple classification methods, and the

accuracy results were compared to filter out the ineffective collections.

The decision to use two data sets as a part of the final application was based on the observation that

”Phishing Websites Dataset”1 had a lot of non-url based features that worked very well based on

the content of the website. In contrast, ”Datasets for Phishing websites detection"10 data set

contains 97 features that depended only on the URL structure, which effectively detect phishing

websites. Including both data sets, with the result from their combined models, effectively acts as

a way for the result to have legitimate checks and balances as well. If both models predict that a

website might be a phishing website, there is a high probability that it is true. Whenever there is a

partial agreement, it is prudent to let the user know and be the final arbiter of this conflict. This

exploration allowed the feature of ”Caution” vs ”Alert” notifications to come up organically.

The models were built by splitting a portion of the input as training and test data. Using a Decision

Tree classifier and cross-validated into 10 splits. It was verified manually by using it as an extension

in regular browsing to flag obvious errors. For the model from the dataset

"𝐷𝑎𝑡𝑎𝑠𝑒𝑡𝑠 𝑓𝑜𝑟 𝑝ℎ𝑖𝑠ℎ𝑖𝑛𝑔 𝑤𝑒𝑏𝑠𝑖𝑡𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛"10 it was noticed that the model’s accuracy was

high with the test data but performed rather poorly with random samples from the real world. This

led to the hypothesis that the model was overfitting the data set. This led to the introduction of the

ensembles for this model in particular. The combination of additional classifiers was tried out

(Decision Tree, k-Nearest Neighbors and Random Forest) and verified with the same methods,

until a minimum accuracy of 80% was achieved.

Tuning individual classifiers is also detrimental to the overall accuracy measurement of a model.

The classification ensemble contained a K-Nearest Neighbor classifier for the

”Datasets for phishing websites detection”10 model. The number of neighbors for the

classification was increased to the effect, that it over-fit the data. This was fruitful since the

ensemble of different classifiers helped reduce the overall variance of the model.

The above experiments were predominantly effectiveness-based approaches. Although using a

combination of two models helped improve the overall goal of detecting phishing websites, it came

at the cost of the delay in prediction. Steps were taken to parallelize the flow of aggregating the

predictions from the two models. That being said, there is no denying that using a classifier to

predict outcomes is inherently expensive. In a resource-constrained environment, it must be called

upon only when truly necessary. Once it’s called upon, it is prudent to reuse its results to save the

cost of classifying again. To this effect, a ”Whitelist” of frequently used websites was added to skip

prediction entirely for overtly obvious websites. Since the intended application of this classification

is in browser extensions, the fact that users will browse popular websites frequently is not an

entirely unfair assumption. Caching the results on the server also goes well with this approach. This

rule-based counterpart for the Machine Learning classifier helps improve the overall efficiency of

the server.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

62

Table 1. Performance Results of the Models

Model Accuracy Precision Recall F1 Score

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 𝑚𝑜𝑑𝑒𝑙10 90.68 92.69 89.20 90.92

Decision tree Model1 80.37 84.03 80.82 82.40

5 Conclusion and Future Work

Phishing is one of the most widespread security attacks on the internet of this age. As the attacks

become increasingly sophisticated, the solutions to prevent them need to keep with them.

Traditional methods of detecting attacks must be combined with the growing fields of machine

learning and artificial intelligence. It is apparent from various experiments and observations that

the ideal solution to such issues is to combine the best approaches and make them work with each

other.

For the enhancement of this implementation, there seems to be a potential to improve the machine

learning models and the features that are being used for classification. The extension and the server

can be updated to also take in user feedback regarding a misclassification of any site. And the

feedback would be considered by the classification models to improve their performance.

Although, it might introduce a fresh set of challenges such as abuse of the feedback system to pass

off an illegitimate site as safe (adversarial attacks). Potential solution to this problem would be to

have a threshold on number of feedbacks until which the system does not consider them for the

particular website.

The solution proposed and implemented in this project can be a genesis to a series of tools and

products that strive to solve the issue of phishing attacks on the internet. The existing rule-based

solutions that use HTML properties of the webpage can be incorporated into the machine learning

models for potential improvement in performance. The existing REST APIs and the Python

interfaces can also be reused to monitor phishing in other contexts. There can be an Android

application that monitors the URLs visited by the user and notifies them if any of them have a

potential to be a threat. And the same use case can be applied to other platforms, operating systems

and at different abstraction levels like network or system.

References

[1] et al, M.: Phishing websites data set by uci,

https://archive.ics.uci.edu/ml/datasets/Phishing+Websites

[2] Acra, B.: Blue arca anti-phishing extension,

https://chrome.google.com/webstore/detail/blue-arca-anti-phishing-e/

https://archive.ics.uci.edu/ml/datasets/Phishing+Websites
https://chrome.google.com/webstore/detail/blue-arca-anti-phishing-e/

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 4, pp. 56 - 63, 2024 www.carijournals.org

63

[3] Cloudphish: Cloudphish anti-phishing extension,

https://chrome.google.com/webstore/detail/cloudphish-anti-

phishing/fcahokjdmffdhglnlhgbceafccfdfjkd?hl=en

[4] Initiative, O.P.: Open pagerank api, https://www.domcop.com/openpagerank/

[5] Lab, T.C.: Test lists, https://github.com/citizenlab/test-lists

[6] Majestic: Majestic top 1 million websites, https://majestic.com/reports/majestic-million

[7] Moghimi, M.: Phishdetector – True phishing detection,

https://chrome.google.com/webstore/detail/phishdetector-true-

phishi/kgecldbalfgmgelepbblodfoogmjdgmj

[8] Proofpoint: Threat report: 2021 state of the phish report,

https://www.proofpoint.com/us/resources/threat-reports/state-of-phish

[9] Retruster: Retruster phishing protection,

https://chrome.google.com/webstore/detail/retruster-phishing-

protec/akcpbmbdplmbhlpeglpbghnkcbhiapil?hl=en

[10] Vrbančič, G.: Datasets for phishing websites detection, Phishing Websites Dataset -

Mendeley Data

[11] Zuelsdorf, A.: Phishing boat, https://chrome.google.com/webstore/detail/phishing-

boat/ljaiihgfejfaggbjfildfnjdckomlfop?hl=en

©2023 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/)

https://chrome.google.com/webstore/detail/cloudphish-anti-phishing/fcahokjdmffdhglnlhgbceafccfdfjkd?hl=en
https://chrome.google.com/webstore/detail/cloudphish-anti-phishing/fcahokjdmffdhglnlhgbceafccfdfjkd?hl=en
https://www.domcop.com/openpagerank/
https://github.com/citizenlab/test-lists
https://majestic.com/reports/majestic-million
https://chrome.google.com/webstore/detail/phishdetector-true-phishi/kgecldbalfgmgelepbblodfoogmjdgmj
https://chrome.google.com/webstore/detail/phishdetector-true-phishi/kgecldbalfgmgelepbblodfoogmjdgmj
https://www.proofpoint.com/us/resources/threat-reports/state-of-phish
https://chrome.google.com/webstore/detail/retruster-phishing-protec/akcpbmbdplmbhlpeglpbghnkcbhiapil?hl=en
https://chrome.google.com/webstore/detail/retruster-phishing-protec/akcpbmbdplmbhlpeglpbghnkcbhiapil?hl=en
https://data.mendeley.com/datasets/72ptz43s9v/1
https://data.mendeley.com/datasets/72ptz43s9v/1
https://chrome.google.com/webstore/detail/phishing-boat/ljaiihgfejfaggbjfildfnjdckomlfop?hl=en
https://chrome.google.com/webstore/detail/phishing-boat/ljaiihgfejfaggbjfildfnjdckomlfop?hl=en

