
International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

0

Unveiling the AWS SAM Magic for Serverless Restful APIs:

Architecting with ALB Path-Based Routing in AWS

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

1

Unveiling the AWS SAM Magic for Serverless Restful APIs: Architecting

with ALB Path-Based Routing in AWS

Balasubrahmanya Balakrishna

https://orcid.org/0009-0000-1195-123X

Richmond, VA, USA

Accepted: 21st Feb 2024 Received in Revised Form: 5th Mar 2024 Published: 19th Mar 2024

Abstract

Purpose: This paper provides a thorough roadmap for developers, architects, and cloud enthusiasts

who want to use the AWS Serverless Application Model (AWS SAM) to create a REST API and

use the power of serverless computing. To handle HTTP requests effectively, the article focuses

on deploying the API behind an Application Load Balancer (ALB) using path-based routing. The

hands-on approach offers detailed instructions and valuable insights on planning, creating, and

implementing serverless REST APIs. The focus is on the details of AWS SAM, examining its

benefits and complexities. The paper makes the procedure easier to understand by providing

thorough code excerpts, explanations, and pictures.

Methodology: The methodology covers local testing using the SAM CLI, allowing developers to

validate the API's functionality before deployment.

Findings: The process also includes local testing with the SAM CLI, which enables developers to

confirm the functioning of the API before deployment. To target the Lambda function, this paper

will discuss AWS Lambda behind an ALB using a path-based listener rule on the ALB. The

article’s conclusions cover essential topics like path-based routing, ALB integration, AWS SAM

template structure, and recommended security and performance optimization practices.

Unique Contributor to Theory, Policy and Practice: Based on these findings, recommendations

offer information on optimizing templates, ensuring secure deployment, and using local testing to

speed up development. Finally, the article walks readers through deploying the built API to AWS

via the SAM CLI, facilitating a seamless transfer from a local development environment to an

environment in production. Ultimately, this paper provides readers with the know-how and

abilities to successfully negotiate AWS SAM's complexities and build reliable serverless REST

APIs.

Keywords: AWS SAM CLI, AWS Lambda, ALB Path-Based Routing, AWS Powertools, AWS

Observability

https://orcid.org/0009-0000-1195-123X
https://doi.org/10.47941/ijce.1734
https://orcid.org/0009-0000-1195-123X

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

2

INTRODUCTION

Thanks to its scalability, affordability, and ease of deployment, serverless computing has

completely changed the application development industry. This paper is intended for cloud

enthusiasts, developers, and architects eager to leverage the AWS Serverless Application Model[1]

(AWS SAM) to realize the full potential of serverless architectures. The main focus of our

investigation is developing and implementing a RESTful API behind an Application Load

Balancer (ALB) that offers complex path-based routing for the best possible HTTP request

processing.

This paper is based on the AWS SAM approach, well-known for simplifying the building of

serverless applications on Amazon Web Services. We explore AWS SAM's nuances, revealing its

benefits and complexities and offering practical takeaways via thorough code samples,

explanations, and sample applications. Our exploration's hands-on methodology, which allows

developers to create, build, and implement serverless REST APIs by following detailed

instructions, is highly significant.

As above, comprehensive coverage of AWS Lambda, essential to the ALB, sets it apart from the

others. We explain how the ALB's path-based listener rule[2] targets and calls the Lambda functions

accurately. This crucial setup ensures that the serverless architecture integrates smoothly and

enables the effective handling of various API calls behind an ALB.

The approach goes beyond development to include local testing with the SAM CLI, which enables

developers to confirm the functioning of the API before deployment. Essential topics covered in

the paper include the AWS SAM template layout, the ALB integration, the complexities of path-

based routing, and the best practices for security and performance optimization. Based on these

findings, recommendations have been made to provide developers with knowledge about secure

deployment procedures, how to optimize templates, and how to employ local testing effectively

for productive development cycles.

This paper gives a comprehensive overview of the deployment process as we wrap off our paper,

walking them through the last stages of utilizing the SAM CLI to deploy the built API to AWS.

This exploration aims to provide the necessary information and abilities to effectively navigate

AWS SAM and build serverless REST APIs that are scalable and resilient.

UNVEILING ARCHITECTURAL PATTERN

We provide an architectural design in serverless computing that improves control and security by

utilizing path-based routing at the Application Load Balancer (ALB) level. In contrast to

traditional methods, this pattern presents a technique that allows REST calls that do not match the

designated pathways to be intelligently prevented at the ALB, which stops the related AWS

Lambda function from being called.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

3

Figure 1. ALB fronted AWS Lambda

A. The Significance of Path-Based Routing

Path-based routing is an essential component of our architectural pattern, which enables

the separation of API endpoints according to their pathways. This method makes it easier

to regulate incoming HTTP requests more precisely by ensuring each request is sent to the

correct Lambda function according to its specified path.

B. Blocking Unwanted Requests at the ALB Level

The capacity of the ALB to serve as a gatekeeper and stop REST calls that do not match

any designated pathways from getting to the Lambda functions is what this architectural

pattern is all about. We improve the serverless API's security posture by applying this rule

at the ALB level, which reduces the attack surface.

C. Ensuring Efficient Resource Utilization

In addition to improving security, blocking undesired requests at the ALB level also helps

to maximize resource usage. Unnecessary computation and related expenses are reduced

by blocking illegal or irrelevant requests from reaching the Lambda functions, leading to a

more efficient and economical serverless architecture.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

4

PRACTICAL IMPLEMENTATION AND CONFIGURATION

The section includes practical insights into the ALB implementation and configuration of path-

based routing. Code snippets, configuration settings, and illustrative examples guide readers

through defining and enforcing path rules to achieve this architectural pattern.

I. Figure 2 illustrates a straightforward representation of a RESTful API constructed using

the AWS Powertools for Lambda library in Python. The simplicity of the design is evident,

showcasing the library's ease of use and effectiveness. The API responds with a clear and

concise success message when an HTTP GET method request is made to the resource path

/hello. This uncomplicated setup highlights the power and user-friendly nature of the AWS

Powertools for Lambda library in Python, offering developers an efficient framework for

building robust serverless applications.

Figure 2. Simple REST API wilt AWS Lambda Powertools

II. To streamline local API testing, we utilize the SAM CLI with its tailored emulation image

for Python, faithfully replicating the Lambda environment for realistic local development.

Figure 3 illustrates the SAM template explicitly crafted for this purpose, showcasing the

orchestrated use of AWS SAM to establish a seamless local testing environment.

The SAM CLI seamlessly extends the capabilities of the AWS CLI, incorporating essential

features for building and validating Lambda applications. Powered by Docker, it

orchestrates function execution within an Amazon Linux environment meticulously

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

5

aligned with Lambda runtime specifications, sourced from sam/build-python3.9. This

emulation ensures a precise replication of the application's build environment and API,

enhancing the accuracy of local testing processes.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

6

1. Parameters:

 - `VPCId`: Specifies the VPC ID where the resources will be deployed.

 - `Subnets`: Specifies the comma-separated subnet IDs where the ALB and Lambda

function will be deployed.

 - `AppName`: Specifies the name of the application.

 - `AlbLambdaRestApiSamPyFunctionRulePath`: Specifies the path pattern for the ALB

listener rule.

 - `AlbLambdaRestApiSamPyFunctionPriority`: Specifies the priority of the ALB listener

rule.

2. Globals:

 - Sets global configurations for Lambda functions (`Timeout,` `MemorySize,` `Tracing,`

and `Environment` variables).

3. Resources:

 - Lambda Function (`AlbLambdaRestApiSamPyFunction`):

 - Specifies the AWS Lambda function named `AlbLambdaRestApiSamPyFunction.`

 - Configures the function with Python 3.9 runtime, a specific handler

(`src.app.lambda_handler`), and other settings.

 - Defines environment variables and assigns IAM role

(`AWSLambdaBasicExecutionRole`).

 - Lambda Function Permission (`AlbLambdaRestApiSamPyFunctionPermission`):

 - Grants permission to the ALB to invoke the Lambda function.

 - Elastic Load Balancer (`AlbLambdaRestApiSamPyFunctionLoadBalancer`):

 - Creates an ALB of type `application` and `internet-facing.`

 - Associates the ALB with specified subnets and security groups.

 - Adds tags to the ALB for identification.

 - Elastic Load Balancer Target Group

(`AlbLambdaRestApiSamPyFunctionTargetGroup`):

 - Creates a target group for the Lambda function in the ALB.

 - ALB Listener (`HttpListener`):

 - Configures an ALB listener on port 80 with a default fixed response for 404 errors.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

7

 - ALB Listener Rule (`AlbLambdaRestApiSamPyFunctionHttpListenerRule`):

 - Associates the ALB listener rule with the Lambda function's target group based on the

specified path pattern.

 - Security Group (`AlbLambdaRestApiSamPyFunctionSecurityGroup`):

 - Creates a security group allowing HTTP traffic on port 80 from any IP (`0.0.0.0/0`).

 - Resource Group (`ApplicationResourceGroup`):

 - Creates an AWS Resource Group for monitoring purposes.

 - Application Insights Monitoring (`ApplicationInsightsMonitoring`):

 - Sets up Application Insights monitoring for the application.

4. Outputs:

 - Provides outputs for the Lambda function ARN, Lambda function IAM role ARN, and

the DNS name of the ALB.

Figure 3. SAM Template (template.yaml)

This template creates a serverless architecture where an ALB forwards HTTP requests to a Lambda

function, and the application's performance is monitored using AWS Application Insights. The

parameters allow customized VPC settings, subnets, and application details.

III. When hosting AWS Lambda behind an Application Load Balancer (ALB). AWS SAM

simplifies generating ALB events for local testing using the command sam local generate-

event alb request. This command can be easily modified to simulate a GET request method,

a step in testing our Lambda API running locally.

The commands below need to be executed to run the Lambda function locally.

a. First, ensure SAM CLI has the dependencies specified in the requirements.txt file.

Using pipenv can be conveniently achieved with the command:

pipenv lock -r > requirements.txt

b. Next, execute the command below:

sam build.

This command automates the application preparation for deployment and ensures

that dependencies are accurately installed, and the code is efficiently packaged for

subsequent deployment to AWS Lambda. By default, the sam build command

searches for a template.yaml file in the current directory. However, the --template

or -t option can specify an alternative template file.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

8

c. Finally, execute the command below to run and invoke the lambda function:

sam local invoke -e events/event.json.

Where event.json is the ALB event generated by executing the sam generate-event

command as discussed above. During the execution of the sam invoke command,

the SAM emulation image is automatically downloaded. This emulation image

plays a pivotal role in simulating the Lambda environment locally, enabling the

seamless execution of the Lambda function. Subsequently, an event is passed to the

Lambda function, allowing developers to observe and validate the behavior of their

serverless application in a local context. This iterative process, made efficient by

SAM emulation[8], enhances the local testing experience, providing valuable

insights into the functionality of the Lambda function before deployment to AWS.

Figure 4. Successful Lamda invocation in local

IV. Ultimately, to bring our serverless application to AWS, we can initiate the deployment

using the SAM CLI command:

sam deploy --guided

This command not only deploys the application but also guides users through a

configuration process, ensuring a tailored and seamless deployment experience. Once

deployed, thorough testing of the full functionality, including the intricacies of ALB path-

based routing, can be performed. This final step ensures that the serverless application

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

9

operates as expected in the AWS environment, providing confidence in its readiness for

production use.

Below, Figure 5 shows the list of resources created in AWS:

Figure 5. List of AWS resources created as part of sam deploy command executed from

local

TESTING LAMBDA API HOSTED IN AWS

Once the application is deployed to AWS, we can test the API behind the Lambda function

as any other rest API behind ALB. Let us test 2 basic scenarios for this pattern:

The ALB Listener Rule setup to enable path-based routing looks as shown in Figure 6

below:

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

10

Figure 6. ALB Listener rule with Path Pattern Condition

Simplifying the process, we will utilize xh utility[5], a lightweight and elegantly formatted

Command-Line Interface (CLI). The call template for the application, as illustrated in

Figure 2, takes on the following straightforward structure:

xh http://{ALB_ID}.{REGION}.elb.amazonaws.com/hello Client-Correlation-Id:bb245

Successful, response on invoke would return a response as below, Figure 7:

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

11

Figure 7. A successful response from Lambda API

 Capturing both CloudWatch logs[3] and X-Ray[4] traces, the API seamlessly integrates with

the AWS Lambda Powertools for Python, as depicted in the visual representation provided in

Figure 8. This integration showcases the synergy between powerful monitoring tools, offering

developers a comprehensive view of the performance and behavior of the serverless application.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

12

Figure 8. AWS Cloudwatch Log Insights and X-Ray Traces

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

13

I. Now, let us evaluate if the path-based rule behavior where we expect to receive 404

returned from ALB when a non-matching path pattern is received. The invocation

pattern would look like

xh http://{ALB_ID}.{REGION}.elb.amazonaws.com/other Client-Correlation-

Id:test404

As expected, we received a response with 404, as shown in Figure 8 below:

Figure 9. A 404 HTTP status response from ALB

RATIONALE

API Gateway [6] offers comprehensive features for building and managing REST APIs, including

robust authentication and authorization mechanisms. However, the cost associated with API

Gateway can become an important factor for scenarios with exceptionally high throughput. API

Gateway pricing is structured to account for various features. Moreover, in high-traffic situations,

the cumulative charges can be significant.

In contrast, the Application Load Balancer (ALB) excels in efficiently handling large volumes of

traffic and is generally more cost-effective for scenarios where sheer throughput is a priority. ALBs

provide advanced load-balancing capabilities, making them a compelling choice for applications

that require rapid and reliable traffic distribution.

Another notable advantage of employing ALB path-based routing is its applicability in breaking

monolithic APIs into finer, granular ones. This approach can independently host each endpoint as

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

14

an individual Lambda function. By configuring path-based routing or other conditions on the ALB

listener, it becomes possible to direct traffic to the respective Lambda function that is handling a

specific API endpoint.

This strategy aligns with the microservices architectural paradigm and offers a pathway for

independent scaling of each Lambda function. This is particularly beneficial when specific API

endpoints experience varying traffic levels or have distinct resource requirements. By decoupling

individual endpoints, organizations can optimize resource allocation and ensure efficient scaling

based on the unique demands of each component.

While AWS API Gateway provides a comprehensive set of API management capabilities, path-

based dynamic routing[7] is a viable solution under specific circumstances. This approach addresses

constraints related to AWS footprint that organizations might want to reduce. It offers the

flexibility to architect finely granular APIs, providing organizations with a pragmatic means to

enhance scalability and resource utilization in their serverless applications.

 CONCLUSION

In conclusion, our exploration of building a serverless REST API with AWS SAM, ALB, and

comprehensive testing methodologies underscores the power and flexibility of serverless

computing in the AWS ecosystem. By leveraging AWS SAM, developers can streamline the

development and deployment of serverless applications, benefiting from its intuitive template

structure and seamless integration with AWS services.

The architectural pattern introduced, involving ALB path-based routing with Lambda behind,

presents a forward-thinking approach to serverless API design. The emphasis on blocking

unwanted requests at the ALB level enhances security and contributes to efficient resource

utilization, aligning with best practices for serverless application development.

The local testing phase, facilitated by SAM CLI and emulation, empowers developers to validate

their applications before deployment confidently. From dependency resolution to Lambda-

compatible package creation, SAM CLI automates crucial steps, ensuring a smooth transition from

local development to the AWS cloud.

The deployment process in the AWS testing phase is demystified with the `sam deploy --guided`

command, offering a guided and configurable deployment experience. Thorough testing, including

ALB path-based routing, allows developers to ensure the robustness and reliability of their

serverless applications.

As we conclude this journey, it is evident that mastering serverless development in AWS involves

a combination of innovative architectural patterns, streamlined development processes, and

rigorous testing methodologies. By embracing the tools and best practices outlined in this paper,

developers can confidently navigate the complexities of serverless computing, delivering scalable

and resilient serverless applications in the AWS cloud.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 5, Issue No. 2, pp. 1 - 15, 2024 www.carijournals.org

15

REFERENCES

[1] AWS (n.d.). Using the AWS SAM CLI. AWS Serverless Application Model Developer Guide.

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/using-sam-

cli.html

[2] AWS (2019, March 27). New – Advanced Request Routing for AWS Application Load

Balancers. AWS News Blog. https://aws.amazon.com/blogs/aws/new-advanced-request-routing-

for-aws-application-load-balancers/

[3] AWS (n.d.). What are Amazon CloudWatch Logs? Amazon CloudWatch Logs.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

[4] AWS (n.d.). What is AWS X-Ray? AWS X-Ray.

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

[5] ducaale / xh (n.d.). Xh. GitHub. https://github.com/ducaale/xh

[6] AWS (n.d.). What is Amazon API Gateway? Amazon API Gateway Developer Guide.

https://docs.aws.amazon.com/apigateway/latest/developerguide/welcome.html

[7] AWS (n.d.). Working with routes for HTTP APIs. Amazon API Gateway Developer Guide.

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-develop-routes.html

[8] AWS (n.d.). AWS SAM. Amazon ECR Public Gallery.

https://gallery.ecr.aws/sam?operatingSystems=Linux

[9] Balasubrahmanya Balakrishna, Comparative Analysis of Amazon Api Gateway and

Application Load Balancer for Serverless Architectures, Journal of Software Engineering (JSE),

2(1), 2024, pp. 1–6

©2023 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/)

