
International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

19

Decoding Lambda API Architectures: Analyzing

Monolithic Lambda Functions Versus Fine-Grained

Single-Purpose Functions

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

20

Decoding Lambda API Architectures: Analyzing Monolithic Lambda

Functions Versus Fine-Grained Single-Purpose Functions

Balasubrahmanya Balakrishna

Richmond, VA, USA

https://orcid.org/0009-0000-1195-123X

Accepted: 2nd Dec 2023 Received in Revised Form: 16th Dec 2023 Published: 30th Dec 2023

Abstract

Purpose: With an emphasis on AWS Lambda specifically, this technical paper explores the trade-

offs and architectural considerations between monolithic and single-purpose functions in server

less computing systems.

Methodology: By examining the effects of using either a monolithic approach or a precisely

calibrated, single-purpose function design, we hope to empower developers and architects. We

investigate in-depth aspects, including resource usage, application monitoring, scalability, and

performance. The approach strongly emphasizes a thorough examination of AWS Lambda's

architectural issues, including the methods and resources utilized to produce insightful results.

Findings: The results emphasize carefully investigating server less computing's scalability,

performance, and resource use, especially regarding single- and monolithic-purpose function

architectures. These observations provide concise factors to take into account when developing

server less applications.

Unique contributor to theory, policy and practice: The last section provides actionable insights

to help developers of server less applications make well-informed decisions by condensing

knowledge into useful suggestions for maximizing system responsiveness and resource

management.

The author, coming from an AWS background, is committed to using these technologies to express

the concept throughout.

Keywords: AWS Lambda, Monolith Lambda Function, Single-Purpose Lambda Function,

Lambda Function Security

https://orcid.org/0009-0000-1195-123X
https://doi.org/10.47941/ijce.1596
https://orcid.org/0009-0000-1195-123X

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

21

INTRODUCTION

 Serverless computing has become a paradigm-shifting technology in recent years, providing pay-

as-you-go pricing structures, reduced operational overhead, and unmatched scalability. AWS

Lambda is a prominent player in the serverless market, offering a stable and adaptable environment

for code execution without requiring server provisioning or management. A crucial issue in the

development process is whether to use monolithic or single-purpose functions, as more entities use

serverless architectures.

 This technical article examines the trade-offs and architectural issues related to monolithic and

single-purpose functions by navigating the complex terrain of serverless architecture, emphasizing

AWS Lambda. It is critical to comprehend the effects of these architectural decisions as developers

and architects work to maximize the serverless applications' performance, scalability, and resource

consumption.

 This analysis delves into the nuanced aspects that determine the success of serverless apps,

surpassing the apparent similarities. We examine the potential outcomes of employing precisely

calibrated, single-purpose functions compared to a monolithic approach. We break down

performance, scalability, resource usage, and application monitoring to comprehensively

understand how these decisions impact the system.

BACKGROUND

A. AWS Lambda Functions: Configuration Essentials

Serverless apps require the proper setup of AWS Lambda functions. Customizing the function to

meet specific requirements entails setting the runtime, memory allocation, timeouts, permission,

and environment variables.

a. Memory allocation affects performance, but timeouts prevent function overruns.

Customize environment-related variables for different settings.

b. Permissions and triggers specify how a function interacts with other AWS services.

c. Configurations for error handling and logging facilitate troubleshooting.

d. Developers may optimize performance and resource consumption by fine-tuning functions

for responsiveness, efficiency, and seamless interaction within the larger serverless

ecosystem with AWS Lambda's various configuration choices.

DECODING MONOLITHIC AND SINGLE-PURPOSE LAMBDA APIS

A. Decoding Monolithic Lambda APIs

 This section explores AWS Lambda's nuances, concentrating on monolithic functions. This brief

investigation deconstructs the API architecture of using monoliths in serverless settings.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

22

Fig. 1 illustrates a Monolith Serverless function consolidating multiple operations into a single

handler. Recognizing that monolithic functions heighten application complexity by amalgamating

various functionalities, one must meticulously consider distinct resources and HTTP methods for

optimal performance. However, the execution role must extensively grant privileges to other AWS

Services, contradicting the principle of least privileges. Additionally, passing method-specific

variables for diverse HTTP methods renders environmental variables unmanageable. Lastly,

configuring timeouts becomes imperative to accommodate the duration of the most time-

consuming procedure.

Fig.1 Monolith Lambda API

B. Decoding Single Purpose Lambda APIs

On the other hand, this section thoroughly examines AWS Lambda, explicitly focusing on single-

purpose functions. Through the utilization of single-purpose functions, this concise analysis

dissects the design of APIs within serverless settings.

In Fig. 1, we showcase a modified version of the Monolith Serverless function, and in Fig. 2, we

closely examine the Single Purpose Serverless function. Significantly, we witness improved

control over various Lambda configurations. Tailor the access and permissions of the single-

purpose function to meet its specific requirements.

Each handler method now performs a unique task, enhancing code maintainability.

Furthermore, timeouts and environment variables are explicitly defined for every function,

contributing to a more precise and effective setup.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

23

Fig.2 Single-Purpose Lambda API

LAMBDA ANALYSIS SERIES: PERFORMANCE, SECURITY, OBSERVABILITY

A. Performance Insights: Analyzing Single-Purpose and Monolithic Lambda APIs

 The entire lambda function's performance may suffer significantly if the Monolithic Lambda API

communicates with a downstream API with erratic response times. This response delay from

downstream API raises AWS regional concurrency consumption, which impacts the monolithic

lambda API's overall performance. It also cascades to other on-demand Lambda instances in the

same AWS region, which may result in request throttling because there is insufficient capacity to

start new instances and process new requests due to increased concurrency requirements because

of the API's erratic response times.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

24

The impact described above, resulting from increased concurrency consumption, becomes evident

using the following calculation for synchronous Lambda function calls:

Concurrency = Duration (sec) x Request per Second (RPS).

Applying the formula[1] above, when configuring the Lambda API to accommodate 150 RPS and

observing a response time increase from 0.3 seconds to 2 seconds, the concurrency requirement

escalates from 45 (150 x 0.3) to 300 (150 x 2).

Establishing a sensible Lambda API timeout remains effective in controlling over-consumed

concurrency.

Nonetheless, as mentioned earlier, the timeout setting for a Monolithic Lambda API is generally

configured to the most extended value for a specific resource and method.

Conversely, single-purpose Lambda APIs enable precise concurrency management and align

timeouts with specific use cases. Shown in Fig.4 below

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

25

Fig. 4 Concurrency Management with Timeout set for each Lambda API

B. Security Insights: Analyzing Single-Purpose API and Monolithic Lambda API

 The Execution Role[2] plays a crucial role in determining the AWS resources accessible through

a Lambda API. Since the AWS Lambda function is limited to having a single assigned role, it

forces an extensive role that contradicts the principle of least privilege. Fig. 5 illustrates an instance

where the Lambda function necessitates broader permission settings to access and modify objects

in an S3 bucket, emphasizing the challenge of maintaining granular permissions.

Fig. 5 Execution Role management with Monolithic Lambda APIs

Conversely, single-purpose lambda API can have a narrowed, function-specific execution role, as

shown in Fig.6. This enables maintaining a minor action set necessary to fulfill a specific task.

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

26

Fig. 6 Execution Role Management with Single-Purposed Lamabda APIs

C. Observability Insights: Analyzing Single-Purpose API and Monolithic Lambda API

I. Logging

 Lambda API authors must implement middleware for intercepting requests and filtering logs in

the context of a Monolithic Lambda API, shown in Fig.7. This middleware implementation is

necessary because the AWS Lambda aggregates function logs into a single log group[3].

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

27

Fig. 7 Additional logging for Monolithic Lambda APIs

This middleware, on the other hand, is unnecessary for single-purposed functions. Having distinct

log groups simplifies issue triage and avoids the need for additional middleware.

II. CloudWatch Metrics

 CloudWatch metrics[4] are generated similarly at each function level. Custom metrics must be

implemented by Lambda API authors to collect the route and other associated metrics, shown in

Fig. 8.

Fig. 8 Additional Route Metrics for Monolithic Lambda APIs

In contrast, the Single-Purpose Lambda API can carefully scope errors, performance, and

concurrency.

III. X-Ray[5] Traces

 In the context of Monolithic Lambda API, Lambda API authors must include annotations and

instrument functions. This information is critical for troubleshooting and aids in searching for

traces connected with given routes. Fig. 9 depicts an instrumentation example.

Fig. 9 Additional Tracing Segment for Monolithic Lambda APIs

On the contrary, adding annotations for Single Purpose Lambda API is a wonderful idea. However,

it is not crucial because debugging difficulties are still manageable.

CONCLUSION

In conclusion, examining Monolithic Lambda Functions versus Fine-Grained Single-Purpose

Functions exposes significant considerations for architects and developers engaged in serverless

International Journal of Computing and Engineering

ISSN 2958-7425 (online)

Vol. 4, Issue No. 2, pp 20 - 28, 2023 www.carijournals.org

28

computing. Although monolithic functions offer simplicity, they entail trade-offs such as reduced

control, added implementation and maintenance complexity, and diminished granularity.

Conversely, single-purpose functions yield superior performance and security, leveraging

precision and versatility. The trade-offs inherent in these approaches underscore the importance of

aligning architectural choices with specific project objectives. As serverless computing expands,

well-informed decisions regarding function design become paramount for optimizing application

speed, scalability, and resource efficiency.

REFERENCES

[1]AWS (n.d.). How to calculate concurrency. AWS Lambda.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-concurrency.html#calculating-

concurrency

[2]AWS (n.d.). Lambda execution role. AWS Lambda.

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

[3]AWS (n.d.). What is Amazon CloudWatch Logs? Amazon CloudWatch Logs.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html

[4]AWS (n.d.). Use Amazon CloudWatch metrics. Amazon CloudWatch.

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html

[5]AWS (n.d.). What is AWS X-Ray? AWS X-Ray.

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

©2023 by the Authors. This Article is an open access article distributed

under the terms and conditions of the Creative Commons Attribution (CC

BY) license (http://creativecommons.org/licenses/by/4.0/)

