Anomaly Detection in Toll Transactions Using AI
DOI:
https://doi.org/10.47941/jts.3167Keywords:
Toll Transaction Systems, Anomaly Detection, AI-driven, Machine Learning, Predictive Analytics, Dynamic PricingAbstract
While the challenges of generating responses in anomaly detection systems are evident, it is crucial to consider the broader implications of such technology in toll transaction management. For instance, utilizing advanced algorithms to analyze transaction patterns can significantly enhance the identification of fraudulent activities, ensuring that revenue loss is minimized. By employing machine learning techniques, systems can learn from historical data, improving their accuracy over time and adapting to new patterns of behavior that may indicate anomalies. Furthermore, the integration of real-time monitoring capabilities could provide instant alerts, allowing for prompt action to be taken when suspicious transactions are detected, thereby reinforcing the security of toll systems and enhancing user trust.
Downloads
References
S. Knapp and T. M. Aldrich, “Methods and systems for anomaly detection using internet protocol (IP) traffic conversation data,” Aug. 2008.
T. W. Beech, M.-O. Martinez-Olague, and J. Cosmen- Schortmann, “Integrity: A Key Enabler for Liability Critical Applications,” Jun. 2005.
M.-D. Nguyen, V.-H. La, W. Mallouli, A. R. Cavalli, and E. M. de, “Toward Anomaly Detection Using Explainable AI,” Aug. 2023, doi: 10.1007/978-3-031-42212-6_10.
S. R. Rayarao, “Revolutionizing Transaction Security with AI Agents: A Predictive Approach to Anomaly Detec- tion,” Jan. 2025, doi: 10.2139/ssrn.5076974.
X. Wang, W. Liu, H. Lin, J. Hu, K. Kaur, and M. S. Hossain, “AI-Empowered Trajectory Anomaly De- tection for Intelligent Transportation Systems: A Hier- archical Federated Learning Approach,” Apr. 2023, doi: 10.1109/TITS.2022.3209903.
T. M. T. Truong, H. Friedrich, and C. Charoenngam, “Success factors for financial sustainability of toll road projects: empirical evidence from China,” Transportation research procedia, Jan. 2020, doi: 10.1016/J.TRPRO.2020.08.219.
A. G. Girma, “Design of a Secure Blockchain-Based Toll-Tax Collection System,” Jan. 2022, doi: 10.1007/978-981- 16-8721-1_18.
“A Machine Learning Approach to Anomaly Detection Based on Traffic Monitoring for Secure Blockchain Network- ing,” IEEE Transactions on Network and Service Management, Sep. 2022, doi: 10.1109/tnsm.2022.3173598.
H. N. Aleisa et al., “Transforming Transportation: Safe & Secure Vehicular Communication & Anomaly Detec- tion with Intelligent Cyber-Physical System & Deep Learn- ing,” IEEE Transactions on Consumer Electronics, doi: 10.1109/tce.2023.3325827.
M. D. Laanaoui, M. Lachgar, H. Mohamed, H. Hamid, S. G. Villar, and I. Ashraf, “Enhancing Urban Traffic Man- agement Through Real-Time Anomaly Detection and Load Balancing,” IEEE Access, doi: 10.1109/access.2024.3393981.
S. Pandey and V. K. P, “Adaptive AI-Driven Toll Man- agement: Enhancing Traffic Flow and Sustainability through Real-Time Prediction, Allocation, and Task Optimization,”Nov. 2024, doi: 10.20944/preprints202411.1595.v1.
“Investigating Abnormal Transaction Detection of Manual Toll Collection (MTC) of Expressway,” Nov. 2022, doi:10.1109/incit56086.2022.10067367.
P. Manojkumar, N. R. Sekaran, M. Dhanapal, and C. Srinivasan, “Virtual Tollgate using Machine Learning,” Mar. 2021, doi: 10.1088/1757-899X/1084/1/012040.
S. Pandey and V. K. P, “An Analytical Framework for Dynamic Toll Booth Allocation: Reducing Queue Lengths and Wait Times Using Mathematical Optimization & IoT,” Dec. 2024, doi: 10.20944/preprints202412.0897.v1.
S. Alshayeb, A. Stevanovic, N. Mitrovic, and B. Dim- itrijevic, “Impact of Accurate Detection of Freeway Traffic Conditions on the Dynamic Pricing: A Case Study of I-95 Express Lanes.,” Sensors, Sep. 2021, doi: 10.3390/S21185997.
K. Usanova, G. S. Rani, N. Mishra, S. Kaur, and J. Sidhu, “Machine Learning for Anomaly Detection in Elec- tric Transportation Networks,” E3S web of conferences, doi:10.1051/e3sconf/202451101039.
“Active Learning Augmented Folded Gaussian Model for Anomaly Detection in Smart Transportation,” ICC 2022- IEEE International Conference on Communications, May 2022, doi: 10.1109/icc45855.2022.9838276.
M. D. O’Keefe, “A stylised macroeconomic model incorporating green capital in the framework of Viability Theory,” Research Papers in Economics, Oct. 2016.
V. Palanichamy, A. Vijay, and R. Moorthy, “Smart in- novative congestion pricing strategy for Traffic demand man- agement in smart cities using Structural Equation Modelling,” Nov. 2023, doi: 10.1109/aicera/icis59538.2023.10420021.
A. Manske, “Advancements in Multi-Objective Eco- Routing Solutions Using Connectivity,” Jun. 2023, doi: 10.32920/23541903.
J. Alahari, A. Mangal, S. Singiri, O. Goel, and Prof. P. Goel, “The Impact of Augmented Reality (AR) on User Engagement in Automotive Mobile Applications,” Innovative research thoughts, Dec. 2023, doi: 10.36676/irt.v9.i5.1483.
A. Mahmood, B. Butler, and B. Jennings, “Potential of Augmented Reality for Intelligent Transportation Systems,” Jun. 2018, doi: 10.1007/978-3-319-08234-9_274-1.
M. Ma, Y. Huang, C.-H. Chu, and P. Wang, “User- driven cloud transportation system for smart driving,” IEEE International Conference on Cloud Computing Tech- nology and Science, Dec. 2012, doi: 10.1109/CLOUD- COM.2012.6427600.
“AI-Powered Tolling,” Traffic technology international, Sep. 2024, doi: 10.12968/s1356-9252(24)40119-6.
D. Banister, K. Anderton, D. Bonilla, M. Givoni, and T. Schwanen, “Transportation and the environment.,” An- nual Review of Environment and Resources, Oct. 2011, doi: 10.1146/ANNUREV-ENVIRON-032310-112100.
X. Dong et al., “A framework of future Innovative Urban Transport,” International Conference on Intelligent Transportation Systems, Nov. 2016, doi: 10.1109/ITSC.2016.7795525.
Á. Huszák, V. Simon, L. Bokor, L. Tizedes, and A. Pekár, “An AI-Driven Intelligent Transportation System: Func- tional Architecture and Implementation,” Híradástechnika, Jan. 2024, doi: 10.36244/icj.2024.3.2.
J. X. Zhang, I. Vukotic, and R. Gardner, “Anomaly detection in wide area network mesh using two machine learning anomaly detection algorithms.,” arXiv: Networking and Internet Architecture, Jan. 2018.
D. Triantafyllos, C. Illera, T. Djukic, and J. Casas, “Dynamic congestion toll pricing strategies to evaluate the potential of route-demand diversion on toll facili- ties,” Transportation research procedia, Jan. 2019, doi: 10.1016/J.TRPRO.2019.09.121.
P. A.-L. Kyprianou, L. Mousselimis, A. Dailianas, and N. Papaspyrou, “Transportation through networks via trust relationships,” Jul. 2014.
S. Samaras-Kamilarakis, P.-A. Vogiatzakis, E. Nathanail, and L. Mitropoulos, “The Contribution of Open Big Data Sources and Analytics Tools to Sustainable Urban Mobility,” May 2018, doi: 10.1007/978-3-030-02305-8_85.
P. Davidson et al., “Stakeholder engagement for regu- lation,” Mar. 2024, doi: 10.1787/fe3cb3a3-en.
J. Gonzalez-Feliu, C. Pronello, and J. M. S. Grau, “Multi-stakeholder collaboration in urban transport: state-of- the-art and research opportunities,” Transport, Dec. 2018, doi: 10.3846/TRANSPORT.2018.6810.
Ö. Güven and H. F. Sahin, “Predictive Maintenance Based On Machine Learning In Public Transportation Ve- hicles,” Mühendislik bilimleri ve aras¸tırmaları dergisi, Apr. 2022, doi: 10.46387/bjesr.1093519.
E. Cascetta, “Urban mobility systems: complexity, mod- els, and eco-rational choices,” Jan. 2014.
M. A. Y. Alqasi, Y. A. M. Alkelanie, and A. J. A. Alnagrat, “Intelligent Infrastructure for Urban Transportation: The Role of Artificial Intelligence in Predictive Maintenance,” Brilliance, Nov. 2024, doi: 10.47709/brilliance.v4i2.4889.
A. Messer, “Transparently managed, content-centric permanent content storage,” Feb. 2003.
A. K. Panda, A. A. Lenka, A. Mohapatra, B. K. Rath, A. Parida, and H. Mohapatra, “Integrating Cloud Computing for Intelligent Transportation Solutions in Smart Cities,” Advances in civil and industrial engineering book series, Oct. 2024, doi: 10.4018/979-8-3693-6695-0.ch005.
S. Sundaresan, K. S. Kumar, R. Nishanth, Y. H. Robin- son, and A. J. Kumar, “Artificial intelligence and machine learning approaches for smart transportation in smart cities using blockchain architecture,” Jan. 2021, doi: 10.1016/B978- 0-12-824446-3.00009-0.
N. K. Stamataki, D. V. Achillopoulou, and N. Makhoul, “Evaluation of Resilience Based on Resources and Adaptation Level in Critical Transport Infrastructures,” Jan. 2024, doi: 10.1007/978-3-031-53824-7_17.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pankaj Lembhe

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution (CC-BY) 4.0 License that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.